Skip to main content
Log in

Synthesis of Nanoparticles of ZnS:Ag-L-cysteine-protoporphyrin IX Conjugates and Investigation its Potential of Reactive Oxygen Species Production

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper, L-cysteine capped Ag doped ZnS nanoparticles (NPs) were synthesized and its usage in photodynamic therapy was examined. Also, the details of the conjugation method for prepared NPs with sensitizer of protoporphyrin IX (PpIX) were reported. FT-IR studies indicate the formation of ZnS:Ag nanoparticles capped with L-cysteine and an amide-bond formation between PpIX and L-cysteine-capped ZnS:Ag NPs. The formation of ZnS:Ag NPs conjugated to protoporphyrin IX was confirmed through the use of SEM, TEM, UV-Visible, FT-IR and DLS analysis. The efficient energy transfer from ZnS:Ag to PpIX sensitizer was estimated at about 90%. The production of reactive oxygen species, including singlet oxygen and free radicals, from ZnS:Ag NPs conjugated to protoporphyrin IX, was observed using a chemical method. The production of reactive oxygen species of this conjugate indicates its potential application in photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Willard DM, Carillo LL, Jung J, Orden AV (2001) CdSe−ZnS quantum dots as resonance energy transfer donors in a model protein−protein binding assay. Nano Lett 1:469–474

    CAS  Google Scholar 

  2. Mamedova NN, Kotov NA, Rogach AL, Studer J (2001) Albumin−CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett 1:281–286

    CAS  Google Scholar 

  3. Bankole OM, Achadu OJ, Nyokong T (2017) Nonlinear interactions of zinc Phthalocyanine-graphene quantum dots nanocomposites: investigation of effects of surface functionalization with heteroatoms. J Fluoresc 27:755–766

    CAS  PubMed  Google Scholar 

  4. Samia CS, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737

    CAS  PubMed  Google Scholar 

  5. Managa M, Ngoy BP, Nyokong T (2019) Photophysical properties and photodynamic therapy activity of a meso-tetra(4-carboxyphenyl)porphyrin tetramethyl ester–graphene quantum dot conjugate. New J Chem 43:4518–4524

    CAS  Google Scholar 

  6. Matshitse R, Nyokong T (2018) Singlet oxygen generating properties of different sizes of charged graphene quantum dot Nanoconjugates with a positively charged Phthalocyanine. J Fluoresc 28:827–838

    CAS  PubMed  Google Scholar 

  7. Idowu M, Chen JY, Nyokong T (2008) Photoinduced energy transfer between water-soluble CdTe quantum dots and aluminium tetrasulfonated phthalocyanine. New J Chem 32:290–296

    CAS  Google Scholar 

  8. Tshangana C, Nyokong T (2015) The Photophysical properties of multi-functional quantum dots-magnetic nanoparticles-indium Octacarboxyphthalocyanine nanocomposite. J Fluoresc 25:199–210

    CAS  PubMed  Google Scholar 

  9. Chen W (2008) Nanoparticle self-lighting photodynamic therapy for cancer treatment. J Biomed Nanotechnol 4:369–376

    CAS  Google Scholar 

  10. Chen W (2008) Nanoparticle fluorescence based technology for biological applications. J Nanosci Nanotechnol 8:1019–1051

    CAS  PubMed  Google Scholar 

  11. Zahedifar M, Sadeghi E, Shanei MM, Sazgarnia A, Mehrabi M (2016) Afterglow properties of CaF2:Tm nanoparticles and its potential application in photodynamic therapy. J Lumin 171:254–258

    CAS  Google Scholar 

  12. Tavakkli F, Zahedifar M, Sadeghi E (2018) Effect of LaF3:Ag fluorescent nanoparticles on photodynamic efficiency and cytotoxicity of Protoporphyrin IX photosensitizer. Photodiagn Photodyn Ther 21:306–311

    Google Scholar 

  13. Manzoor K, Johny S, Thomas D, Setua S, Menon D, Nair S (2009) Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging. Nanotechnology 20:065102

    PubMed  Google Scholar 

  14. Chen L, Liu Y, Lai C, Berry RM, Tam KC (2015) Aqueous synthesis and biostabilization of CdS@ZnS quantum dots for bioimaging applications. Mater Res Express 2:105401

    Google Scholar 

  15. Mathew ME, Mohan JC, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Folate conjugated carboxymethyl chitosan-manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym 80:442–448

    CAS  Google Scholar 

  16. Masteri-Farahani M, Mahdavi S, Khanmohammadi H (2018) Chemically functionalized ZnS quantum dots as new optical nanosensor of herbicides. Mater Res Express 5:035055

    Google Scholar 

  17. Murase N, Jagannathan R, Kanematsu Y, Watanabe M, Kurita A, Hirata K, Yazawa T, Kushida T (1999) Fluorescence and EPR characteristics of Mn2+ −doped ZnS nanocrystals prepared by aqueous colloidal method. J Phys Chem B 103:754–760

    CAS  Google Scholar 

  18. Yang P, Lu M, Xu D, Yuan D, Zhou G (2001) Photoluminescence properties of ZnS nanoparticles co-dope with Pb2+ and Cu2+. Chem Phys Lett 336:76–80

    CAS  Google Scholar 

  19. Kim JY, Park SH, Jeong T, Bae MJ, Kim YC, Han I, Yu S (2010) High electroluminescence of the ZnS:Mn nanoparticle/cyanoethyl-resin polymer/single-walled carbon nanotube composite using the tandem structure. J Mater Chem 22:20158–20162

    Google Scholar 

  20. Aswathy J, Jahnavi S, Krishna R, Manzoor K, Nair S, Menon D (2011) Targeted labeling of cancer cells using biotin tagged avidin functionalized biocompatible fluorescent nanocrystals. J Nanosci Nanotechnol 11:7611–7620

    CAS  PubMed  Google Scholar 

  21. Wang CL, Gou L, Zaleski JM, Friesel DL (2010) ZnS quantum dot based nanocomposite scintillators for thermal neutron detection. Nucl Instrum Methods A 622:186–190

    CAS  Google Scholar 

  22. Ma L, Zou X, Bui B, Chen W, Song KH, Solberg T (2014) X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation. Appl Phys Lett 105:013702

    Google Scholar 

  23. Ma L, Zou X, Hossu M, Chen W (2016) Synthesis of ZnS:Ag,Co water-soluble blue afterglow nanoparticles and application in photodynamic activation. Nanotechnology. 27:315602

    PubMed  Google Scholar 

  24. Visheratina AK, Loudon A, Kuznetsova VA, Orlova AO, Gun’ko YK, Baranov AV, Fedorov AV (2018) Water-soluble conjugates of ZnS:Mn quantum dots with chlorin e6 for photodynamic therapy. Opt Spectrosc 125:94–98

    CAS  Google Scholar 

  25. Huang F, Lan Y, Lan P (2011) Synthesis and characterization of water-soluble L-cysteine-modified ZnS nanocrystals doped with silver. J Mater Sci 46:5732–5736

    CAS  Google Scholar 

  26. Kumar S, Singhal M, Sharma JK (2013) Functionalization and characterization of ZnS quantum dots using biocompatible L-cysteine. J Mater Sci Mater Electron 24:3875–3880

    CAS  Google Scholar 

  27. Grabarek Z, Gergely J (1990) Zero-length crosslinking procedure with the use of active esters. Anal Biochem 185:131–135

    CAS  PubMed  Google Scholar 

  28. Bartczak D, Kanaras AG (2011) Preparation of peptide functionalized gold nanoparticles using one pot EDC/sulfo-NHS coupling. Langmuir. 27:10119–10123

    CAS  PubMed  Google Scholar 

  29. Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6:103–110

    CAS  PubMed  Google Scholar 

  30. Yaghini E, Seifalian AM, MacRobert AJ (2009) Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine 4:353–363

    CAS  PubMed  Google Scholar 

  31. Yaghini E, Giuntini F, Eggleston IM, Suhling K, Seifalian AM, MacRobert AJ (2014) Fluorescence lifetime imaging and FRET-induced intracellular redistribution of Tat-conjugated quantum dot nanoparticles through interaction with a phthalocyanine photosensitizer. Small 10:782–792

    CAS  PubMed  Google Scholar 

  32. Liu Y, Zhang Y, Wang S, Pope C, Chen W (2008) Optical behaviors of ZnO-porphyrin conjugates and their potential applications for cancer treatment. Appl Phys Lett 92:143901

    Google Scholar 

  33. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35:369–430

    CAS  PubMed  Google Scholar 

  34. Corrado C, Jiang Y, Oba F, Kozina M, Bridges F, Zhang JZ (2009) Synthesis, structural, and optical properties of stable zns:cu,cl nanocrystals†. J Phys Chem A 113:3830–3839

    CAS  PubMed  Google Scholar 

  35. Vanitha Kumari G, JothiRajanm MA, Mathavan T (2018) Pectin functionalized gold nanoparticles towards singlet oxygen generation. Mater Res Express 5:085027

    Google Scholar 

  36. Wang K, Yu L, Yin S, Li H, Li H (2009) Photocatalytic degradation of methylene blue on magnetically separable FePc/Fe3O4 nanocomposite under visible irradiation. Pure Appl Chem 81:2327–2335

    CAS  Google Scholar 

  37. Abdollahi Y, Abdullah AH, Zainal Z, Yusof NA (2011) Photocatalytic degradation of p-cresol by zinc oxide under UV irradiation. Int J Mol Sci 13:302–315

    PubMed  PubMed Central  Google Scholar 

  38. Mansur AAP, Mansur HS, De Souza PP, Ramanery FP, Carlos L, Souza PP (2014) ‘ Green ’ colloidal ZnS quantum dots / chitosan nanophotocatalysts for advanced oxidation processes : study of the photodegradation of organic dye pollutants. Appl Catal B Environ. 158:269–279

    Google Scholar 

  39. Craig RA, McCoy CP, Baróid ATD, Andrews GP, Gorman SP, Jones DS (2015) Quantification of singlet oxygen generation from photodynamic hydrogels. React Funct Polym 87:1–6

    CAS  Google Scholar 

  40. Qi ZD, Li DW, Jiang P, Jiang FL, Li YS, Liu Y, Wong WK, Cheah KW (2011) Biocompatible CdSe quantum dot-based photosensitizer under two-photon excitation for photodynamic therapy. J Mater Chem 21:2455–2458

    CAS  Google Scholar 

  41. Liu Y, Chen W, Wang S, Joly AG (2008) Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Appl Phys Lett 92:043901

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the research council of the University of Kashan for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sadeghi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, E., Mahmoodian, Z. & Zahedifar, M. Synthesis of Nanoparticles of ZnS:Ag-L-cysteine-protoporphyrin IX Conjugates and Investigation its Potential of Reactive Oxygen Species Production. J Fluoresc 29, 1089–1101 (2019). https://doi.org/10.1007/s10895-019-02420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02420-1

Keywords

Navigation