Skip to main content
Log in

Synthesis, Photo-physical and DFT Studies of ESIPT Inspired Novel 2-(2′,4′-Dihydroxyphenyl) Benzimidazole, Benzoxazole and Benzothiazole

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Novel ESIPT inspired benzimidazole, benzoxazole and benzothiazole were synthesized from 2,4-dihydroxy benzoic acid and 1,2-phenelenediamine, 2-aminophenol, and 2-aminothiophenol respectively. The synthesized 2-(2′,4′-dihydroxyphenyl) benzimidazole, benzoxazole and benzothiazole are fluorescent and the emission characteristic are very sensitive to the micro-environment. They show a single absorption and dual emission with large Stokes shift originating from excited state intramolecular proton transfer. The absorption-emission characteristics of all these compounds are studied as a function of pH. The change in the electronic transition, energy levels, and orbital diagrams of synthesized compounds were investigated by the molecular orbital calculation and were correlated with the experimental spectral emission. Experimental absorption and emission wavelengths are in good agreement with those predicted using the Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) [B3LYP/6-31G(d)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Malhotra BD, Turner APF (2003) Advances in biosensors 4: perspectives in biosensors. Elsevier, UK

    Google Scholar 

  2. Damia B, Peter DH (2010) Biosensors for the environmental monitoring of aquatic systems. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin.

  3. Johnsson N (2007) Chemical tools for biomolecular imaging. ACS Chem Biol 2:31–38

    Article  PubMed  CAS  Google Scholar 

  4. Unciti-Broceta A, Díaz-Mochón J, Mizomoto H, Bradley M (2008) pH sensing in living cells using fluorescent microspheres. J Comb Chem 10:179–184

    Article  PubMed  CAS  Google Scholar 

  5. Domaille D, Que E, Chang C (2008) Synthetic fluorescent sensors for studying the cell biology of metals. J Nat Chem Biol 4:168–175

    Article  CAS  Google Scholar 

  6. Giepmans B, Adams S, Ellisman M, Tsien R (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  PubMed  CAS  Google Scholar 

  7. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  PubMed  CAS  Google Scholar 

  8. Zhang J, Campbell R, Ting A, Tsien R (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  PubMed  CAS  Google Scholar 

  9. Diaz-Mochón J, Tourniaire G, Bradley M (2007) Microarray platforms for enzymatic and cell-based assays. Chem Soc Rev 36:449–457

    Article  PubMed  Google Scholar 

  10. Pernagallo S, Unciti-Broceta A, Diaz-Mochón J, Bradley M (2008) Deciphering cellular morphology and biocompatibility using polymer microarrays. Biomed Mater 3:34112–34118

    Article  Google Scholar 

  11. Unciti-Broceta A, Diezmann F, Ou-Yang C, Fara M, Bradley M (2009) Synthesis penetrability and intracellular targeting of fluorescein-tagged peptides and peptide–peptoid hybrids. Bioorg Med Chem 17:959–966

    Article  PubMed  CAS  Google Scholar 

  12. Lavis L, Raines R (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155

    Article  PubMed  CAS  Google Scholar 

  13. Hell S (2003) Toward fluorescence nanoscopy. Nat Biotechnol 11:1347–1355

    Article  Google Scholar 

  14. Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171

    Article  PubMed  CAS  Google Scholar 

  15. Alexander L, Dhaliwal K, Simpson J, Bradley M (2008) Dunking doughnuts into cells--selective cellular translocation and in vivo analysis of polymeric micro-doughnuts. Chem Commun 30:3507–3509

    Google Scholar 

  16. Thommey PT, Mon TM, Jing YY, Kimberly C, Alina K, James B, Peter C, Theodore BN, James RB (2004) Detection and analysis of tumor fluorescence using a Two-photon optical fiber probe. Biophysics J 86(6):3959–3965

    Article  Google Scholar 

  17. Bingshuai W, Fabiao Y, Peng L, Xiaofei S, Keli H (2013) A BODIPY fluorescence probe modulated by selenoxide spirocyclization reaction for peroxynitrite detection and imaging in living cells. Dyes Pigment 96:383–390

    Article  Google Scholar 

  18. Charier S, Ruel O, Baudin JB, Alcor D, Allemand JF, Meglio A, Jullien L (2004) An efficient fluorescent probe for ratiometric pH measurements in aqueous solutions. Angew Chem Int Ed 43:4785–4788

    Article  CAS  Google Scholar 

  19. Wong LS, Birembaut F, Bocklesby WS, Frey JG, Bradley M (2005) Resin bead micro-UV-Visible absorption spectroscopy. Anal Chem 77:2247–2251

    Article  PubMed  CAS  Google Scholar 

  20. Cho JK, Wong LS, Dean TW, Ichihara O, Muller C, Bradley M (2004) pH indicating resins. Chem Commun 13:1470–1471

    Google Scholar 

  21. Cho JK, White PD, Klute W, Dean TW, Bradley M (2003) Self-indicating resins: sensor beads and in situ reaction monitoring. J Comb Chem 5:632–636

    Article  CAS  Google Scholar 

  22. Wong LS, Brocklesby WS, Bradley M (2005) Fibre optic pH sensors employing tethered non-fluorescent indicators on macroporous glass. Sens Actuator B Chem 107:957–962

    Article  CAS  Google Scholar 

  23. Bradley M, Alexander L, Duncan K, Chennaoui M, Jones AC, Sanchez-Martin RM (2008) pH sensing in living cells using fluorescent microspheres. Bioorg Med Chem Lett 18:313–317

    Article  PubMed  CAS  Google Scholar 

  24. Vasylevska AS, Karasyov AA, Borisov SM, Krause C (2007) Fluorescent pH indicators, probes and membranes covering a broad pH range. Anal Bioanal Chem 387:2131–2141

    Article  PubMed  CAS  Google Scholar 

  25. Demchenko AP (2009) Introduction to fluorescence sensing, Springer Science + Business Media B.V.

  26. Demschenko AP (2005) The problem of self-calibration of fluorescence signal in microscale sensor systems. Lab Chip 5:1210–1223

    Article  Google Scholar 

  27. Demschenko AP (2005) The future of fluorescence sensor arrays. Trends Biotchnol 23:456–460

    Article  Google Scholar 

  28. Basaric N, Wan P (2006) Competing excited state intramolecular proton transfer pathways from phenol to anthracene moieties. J Org Chem 71:2677–2686

    Article  PubMed  CAS  Google Scholar 

  29. Sinha H, Dogra S (1986) Ground and excited state prototropic reactions in 2-(o-hydroxyphenyl) benzimidazole. Chem Phys 102:337–347

    Article  CAS  Google Scholar 

  30. Douhal A, Amat-Guerri F, Lillo M, Acuna A (1994) Proton transfer spectroscopy of 2-(2′-hydroxyphenyl) imidazole and 2-(2′-hydroxyphenyl) benzimidazole dyes. J Photochem Photobiol A Chem 78:127–138

    Article  CAS  Google Scholar 

  31. Min WC, Tsung YL, Cheng CH, Kuo CT, Hungshin F, Pi TC, Shen HY, Yun C (2010) Excited-state intramolecular proton transfer (ESIPT) fine tuned by quinoline-pyrazole isomerism: π-conjugation effect on ESIPT. J Phys Chem A 114:7886–7891

    Article  Google Scholar 

  32. Douhal A, Amat GF, Acuna AU (1997) Probing nanocavities with proton-transfer fluorescence. Angew chem Int Ed Engl 36:1514–1516

    Article  CAS  Google Scholar 

  33. Huang J, Peng AD, Fu HB, Ma Y, Zhai TY, Yao JN (2006) Temperature-dependent ratiometric fluorescence from an organic aggregates system. J Phys Chem A 110:9079–9083

    Article  PubMed  CAS  Google Scholar 

  34. Padalkar VS, Tathe AB, Gupta VD, Patil VS, Phatangare KR, Sekar N (2012) Synthesis and photo-physical characteristics of ESIPT inspired 2-substituted benzimidazole, benzoxazole and benzothiazole fluorescent derivatives. J Fluoresc 22:311–322

    Article  PubMed  CAS  Google Scholar 

  35. Minkin VI, Garnovskii AD, Elguero J, Katritzky AR, Denisko OV (2000) The tautomerism of heterocycles: five-membered rings with two or more heteroatoms. Adv Heterocyc Chem 76:157–323

    Article  CAS  Google Scholar 

  36. Doroshenko A, Posokhov E, Verezubova A, Ptyagina L (2000) Excited state intramolecular proton transfer reaction and luminescent properties of the ortho-hydroxy derivatives of 2,5-diphenyl-1,3,4-oxadiazole. J Phys Org Chem 13:253–265

    Article  CAS  Google Scholar 

  37. Zhao J, Ji S, Chen Y, Guo H, Yang P (2012) Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys Chem Chem Phys 14:8803–8817

    Article  PubMed  CAS  Google Scholar 

  38. Sandra S, Dogra S (1999) Excited state intramolecular protons transfer in 2-(2′-N-palmitoyl-aminophenyl) benzimidazole: effect of carbonyl group. J Mol Struct 476:223–233

    Article  Google Scholar 

  39. Douhal A, Amat GF, Lillo M, Acuna A (1994) Proton transfer spectroscopy of 2-(2′-hydroxyphenyl)imidazole and 2-(2′-hydroqphenyl)benzimidazole dyes. J Photochem Photobiol A Chem 78:127–138

    Article  CAS  Google Scholar 

  40. Williams D, Heller A (1970) Intramolecular proton transfer reactions in excited fluorescent compounds. J Phys Chem 74:4473–4480

    Article  Google Scholar 

  41. Anthony K, Brown R, Hepworth J, Hodgson K, May B (1984) Solid-state fluorescent photophysics of some 2-substituted benzothiazoles. J Chem Soc Perkin Trans 2:2111–2117

    Google Scholar 

  42. Tian M, Peng X, Fan J, Wang J, Sun S (2012) A fluorescent sensor for pH based on rhodamine fluorophore. Dyes Pigments 95:112–115

    Article  CAS  Google Scholar 

  43. Ogikubo S, Nakabayashi T, Adachi T, Islam MS, Yoshizawa T, Kinjo M (2011) Intracellular pH sensing using autofluorescence lifetime microscopy. J Phys Chem B 115(34):10385–10390

    Article  PubMed  CAS  Google Scholar 

  44. Zhang WS, Tang B, Liu X, Liu YY, Xu KH, Ma JP (2009) A highly sensitive acidic pH fluorescent probe and its application to HepG2 cells. Analyst 134(2):367–371

    Article  PubMed  CAS  Google Scholar 

  45. Kim HN, Guo ZQ, Zhu WH, Yoon J, Tian H (2011) Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev 40(1):79–93

    Article  PubMed  CAS  Google Scholar 

  46. Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110:2709–2728

    Article  PubMed  CAS  Google Scholar 

  47. Patil NR, Melavanki RM, Kapatkar SB, Ayachit NH, Saravanan J (2011) J Fluoresc 21:1213–1222

    Article  PubMed  CAS  Google Scholar 

  48. Melavanki RM, Patil NR, Kapatkar SB, Ayachit NH, Umapathy S, Thipperudrappa J, Nataraju AR (2011) J Mol Liq 158(2):105–110

    Article  CAS  Google Scholar 

  49. Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346–354

    Article  CAS  Google Scholar 

  50. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  51. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti conelation energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  52. Kim CH, Park J, Seo J, Park SJ, Joo TJ (2010) Excited state intramolecular proton transfer and charge transfer dynamics of a 2-(2′-hydroxyphenyl)benzoxazole derivative in solution. Phys Chem A 114:5618–5629

    Article  CAS  Google Scholar 

  53. Santra M, Moon H, Park MH, Lee TW, Kim Y, Ahn KH (2012) Dramatic substituent effects on the photoluminescence of boron complexes of 2-(benzothiazol-2-yl)phenols. Chem Eur J. doi:10.1002/chem.201200726

    Google Scholar 

  54. Li H, Niu L, Xu X, Zhang S, Gao F (2011) Excited state proton transfer in guanine in the gas phase and in water. J Fluoresc 21:1721–1728

    Article  PubMed  CAS  Google Scholar 

  55. Furche F, Rappaport D (2005) Density functional theory for excited states: equilibrium structure and electronic spectra. In: Olivucci M (ed) Computational photochemistry, vol 16, Chapter 3. Elsevier, Amsterdam

    Chapter  Google Scholar 

  56. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New York

    Book  Google Scholar 

  57. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH Verlag, Weinheim

    Book  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision C.01. Gaussian, Inc, Wallingford

    Google Scholar 

  59. Padalkar VS, Patil VS, Sekar N (2011) Synthesis and characterization of novel 2, 2′- bipyrimidine fluorescent derivative for protein binding. Chem Central J 5(72):1–7

    Google Scholar 

  60. Padalkar VS, Patil VS, Sekar N (2011) Synthesis and photo-physical properties of fluorescent 1,3,5-triazine styryl derivatives. Chem Central J 5(77):1–9

    Google Scholar 

  61. Patil VS, Padalkar VS, Phatangare KR, Gupta VD, Umape PG, Sekar N (2012) Synthesis of new ESIPT-fluorescein: photophysics of pH sensitivity and fluorescence. J Phys Chem A 116(1):536–545

    Article  PubMed  CAS  Google Scholar 

  62. Padalkar VS, Ponnadurai R, Sekar N (2013) A combined experimental and DFT-TDDFT study of the excited-state intramolecular proton transfer (ESIPT) of 2-(2′-hydroxyphenyl) imidazole derivatives. J Fluoresc. doi:10.1007/s10895-013-1201-2

    Google Scholar 

  63. Padalkar VS, Patil VS, Telore RD, Sekar N (2012) Synthesis of novel fluorescent 1,3,5-trisubstituted triazine derivatives and photophysical property evalualation of fluorophores and its BSA conjugates. Heterocyclic Commun 18(3):127–134

    Article  Google Scholar 

Download references

Acknowledgments

Vikas Patil and Vikas Padalkar are thankful to the Institute of Chemical Technology, Mumbai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sekar.

About this article

Cite this article

Patil, V.S., Padalkar, V.S., Tathe, A.B. et al. Synthesis, Photo-physical and DFT Studies of ESIPT Inspired Novel 2-(2′,4′-Dihydroxyphenyl) Benzimidazole, Benzoxazole and Benzothiazole. J Fluoresc 23, 1019–1029 (2013). https://doi.org/10.1007/s10895-013-1228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1228-4

Keywords

Navigation