Skip to main content
Log in

Sensing of Micellar Microenvironment with Dual Fluorescent Probe, Triazolylpyrene (TNDMBPy)

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We report a dual fluorescent triazolylpyrene (TNDMB Py) as an efficient fluorescent light-up probe of various micellar microenvironments. The absorption spectra of TNDMB Py in an aqueous solution of varying surfactant concentration, CTAB, SDS and TX-100 showed that as the surfactant concentration was increased the absorbance increased with no shift in wavelength maxima. The increase of absorbance in each surfactant solution with increase in surfactant concentration was due to the enhanced solubilization of TNDMB Py in surfactant solutions. Our investigations based on steady state and time resolved fluorescence techniques showed that the probe reports the microenvironment of ionic surfactant solutions (CTAB and SDS) via dual emission (LE and ICT) at low surfactant concentration. The ICT band showed a blue shifting pattern with enhanced intensity that disappeared as the concentration of surfactant increases (> 1 mM for CTAB and > 3 mM for SDS). In non-ionic surfactant (Triton X-100) solution, the fluorophore showed dual emission with dominant ICT behaviour over LE emission at low concentration (up to 0.35 mM). In reverse micelle we observed a blue shifted ICT band with no LE band with increasing molar concentration of water. We found 100 nm blue shifting when we moved from R = 0 to R = 7, where R is the molar ratio of water to TX-100 (R = [H2O]/[TX-100]). The blue shifting of ICT band is because of the movement of the probe from hydrophilic core to hydrophobic core (surface) of the reverse micelle. Thus from the steady-state fluorescence study it was observed that the ICT band of the probe, TNDMB Py was more influenced by the micellar environment in comparison to the LE band. This difference in behaviour of the fluorophore is probably because of varying extent of hydrophobic/hydrogen bonding interactions experienced by the probe and its relative disposition inside the various micellar nanocores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Paradies HH (1980) Shape and size of a nonionic surfactant micelle. Triton X-100 in aqueous solution. J Phys Chem 84:599–607

    Article  CAS  Google Scholar 

  2. Attwood D, Florence AT (1983) Surfactant Systems; Chapman Hall: London

  3. Lang J and Zana R (1987) Surfactant solutions: New methods of investigation, In Zana R (Ed.), Surfactant science series, Vol. 22, Marcel Dekker, New York, Chapter 8, pp. 405–4.52

  4. Gehlan M, DeSchryver FC (1993) Time-resolved fluorescence quenching in micellar assemblies. Chem Rev 93:199–221

    Article  Google Scholar 

  5. Kalyansundaram K (1987) Microheterogeneous systems. Academic, New York

    Google Scholar 

  6. Phillies GDJ, Hunt RH, Strang K, Sushkin N (1995) Aggregation number and hydrodynamic hydration levels of Brij-35 micelles from optical probe studies. Langmuir 11:3408–3416

    Article  CAS  Google Scholar 

  7. Phillies GDJ, Yambert JE (1996) Solvent and solute effects on hydration and aggregation numbers of triton X-100 micelles. Langmuir 12:3431–3436

    Article  CAS  Google Scholar 

  8. Laughlin RG (1994) The aqueous phase behavior of surfactants. Academic, London

    Google Scholar 

  9. Guharay J, Sengupta PK (1996) Characterization of the fluorescence emission properties of 7-Azatryptophan in reverse micellar environments. Biochem Biophys Res Commun 219:388–392

    Article  PubMed  CAS  Google Scholar 

  10. Zachariasse KA, Yoshihara T, Druzhinin SI (2002) Picosecond and nanosecond fluorescence decays of 4-(Dimethylamino)phenylacetylene in comparison with those of 4-(Dimethylamino)benzonitrile. No evidence for intramolecular charge transfer and a nonfluorescing intramolecular charge-transfer state. J Phys Chem A 106:6325–6333

    Article  CAS  Google Scholar 

  11. Bhattacharyya K (2003) Solvation dynamics and proton transfer in supramolecular assemblies. Acc Chem Res 36:95–101

    Article  PubMed  CAS  Google Scholar 

  12. Shaw AK, Pal SK (2007) Fluorescence relaxation dynamics of acridine orange in Nanosized micellar systems and DNA. J Phys Chem B 111:4189–4199

    Article  PubMed  CAS  Google Scholar 

  13. Sedgwick MA, Crans DC, Levinger NE (2009) What is inside a nonionic reverse micelle? Probing the interior of igepal reverse micelles using decavanadate. Langmuir 25:5496–5503

    Article  PubMed  CAS  Google Scholar 

  14. Rafiq S, Yadav R, Sen P (2010) Microviscosity inside a nanocavity: a femtosecond fluorescence up-conversion study of malachite green. J Phys Chem B 114:13988–13994

    Article  PubMed  CAS  Google Scholar 

  15. Mall S, Buckton G, Rawlins DA (1996) Dissolution behaviour of sulphonamides into sodium dodecyl sulfate micelles: a thermodynamic approach. J Pharm Sci 85:75–78

    Article  PubMed  CAS  Google Scholar 

  16. Caetano W, Tabak M (1999) Interaction of chlorpromazine and trifluoperazine with ionic micelles: electronic absorption spectroscopy studies. Spectrochim Acta Part A: Molecular and Biomolecular Spectroscopy 55:2513–2528

    Article  Google Scholar 

  17. Yushmanov VE, Perussi JR, Imasato AC, Rugiero M, Tabak M (1994) Ionization and binding equilibria of papaverine in ionic micelles studied by 1H NMR and optical absorption spectroscopy. Biophys Chem 52:157–163

    Article  PubMed  CAS  Google Scholar 

  18. Fresta M, Guccione S, Beccari AR, Furneri PM, Puglisi G (2002) Combining molecular modeling with experimental methodologies: mechanism of membrane permeation and accumulation of ofloxacin. Bioorg Med Chem 10:3871–3889

    Article  PubMed  CAS  Google Scholar 

  19. Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic, London

    Google Scholar 

  20. Price SE, Jappar D, Lorenzo P, Saavedra JE, Hrabie JA, Davies KM (2003) Micellar catalysis of nitric oxide dissociation from Diazeniumdiolates. Langmuir 19:2096–2102

    Article  CAS  Google Scholar 

  21. Rosen MJ (1989) Surfactants and interfacial phenomena, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  22. Sarkar A, Pramanik S, Banerjee P, Bhattacharya SC (2008) Interaction of 1-anthracene sulphonate with cationic micelles of alkyl trimethyl ammonium bromides (CnTAB): A spectroscopic study. Colloids Surf A Physicochemical and Engineering Aspects 317:585–591

    Article  CAS  Google Scholar 

  23. Ali M, Jha M, Das SK, Saha SK (2009) Hydrogen-Bond-Induced microstructural transition of ionic micelles in the presence of neutral naphthols: pH dependent morphology and location of surface activity. J Phys Chem B 113:15563–15571

    Article  PubMed  CAS  Google Scholar 

  24. Banerjee P, Pramanik S, Sarkar A, Bhattacharya SC (2008) Modulated Photophysics of 3-Pyrazolyl-2-pyrazoline derivative entrapped in micellar assembly. J Phys Chem B 112:7211–7219

    Article  PubMed  CAS  Google Scholar 

  25. Chakrabarty A, Das P, Mallick A, Chattopadhyay N (2008) Effect of surfactant chain length on the binding interaction of a biological photosensitizer with cationic micelles. J Phys Chem B 112:3684–3692

    Article  PubMed  CAS  Google Scholar 

  26. Lopez F, Cuomo F, Ceglie A, Ambrosone L, Palazzo G (2008) Quenching and dequenching of pyrene fluorescence by nucleotide monophosphates in cationic micelles. J Phys Chem B 112:7338–7344

    Article  PubMed  CAS  Google Scholar 

  27. Fuguet E, Ràfols C, Bosch E, Rosés M (2003) Characterization of the solvation properties of sodium n-Dodecyl sulfate micelles in buffered and unbuffered aqueous phases by solvatochromic indicators. Langmuir 19:55–62

    Article  CAS  Google Scholar 

  28. Biver T, Boggioni A, Secco F, Venturini M (2008) Gallium(III)/4-(2-Pyridylazo)resorcinol system in water and SDS solution: kinetics and thermodynamics. Langmuir 24:36–42

    Article  PubMed  CAS  Google Scholar 

  29. Almgren M (1992) Diffusion-influenced deactivation processes in the study of surfactant aggregates. Adv Colloid Interface Sci 41:9–32

    Article  CAS  Google Scholar 

  30. Karuskstis KK, Suljak SW, Waller PJ, Whiles JA, Thompson EHZ (1996) Fluorescence analysis of single and mixed micelle systems of SDS and DTAB. J Phys Chem 100:11125–11132

    Article  Google Scholar 

  31. Bandyopadhyay P, Ghosh AK, Bandyopadhyay S (2009) Brij-micelle and polyacrylic acid interaction investigated by Cu2+-induced pyrene fluorescence: effect of brij-micelle structure. Chem Phys Lett 476:244–248

    Article  CAS  Google Scholar 

  32. Bag SS, Kundu R (2011) Installation/Modulation of the emission response via click reaction. J Org Chem 76:3348–3356

    Article  PubMed  CAS  Google Scholar 

  33. Kalyanasundram K (1987) Photochemistry in microheterogeneous systems. Academic, New York

    Google Scholar 

  34. Almgren M, Griesser F, Thomas JK (1979) Dynamic and static aspects of solubilization of neutral arenes in ionic micellar solutions. J Am Chem Soc 101:279–291

    Article  CAS  Google Scholar 

  35. Saroja G, Ramachandram B, Saha S, Samanta A (1999) The fluorescence response of a structurally modified 4-Aminophthalimide derivative covalently attached to a fatty acid in homogeneous and micellar environments. J Phys Chem B 103:2906–2911

    Article  CAS  Google Scholar 

  36. Bag SS, Kundu R, Talukdar S (2012) Fluorometric sensing of Cu2+ ion with smart fluorescence light-up probe, triazolylpyrene (TNDMBPy). Tetrahedron Lett 53:5875–5879

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Department of Science and Technology [DST: SR/SI/OC-69/2008], Govt. of India, for a financial support. R. K. thanks IIT Guwahati, India, for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhendu Sekhar Bag.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bag, S.S., Kundu, R. Sensing of Micellar Microenvironment with Dual Fluorescent Probe, Triazolylpyrene (TNDMBPy). J Fluoresc 23, 929–938 (2013). https://doi.org/10.1007/s10895-013-1218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1218-6

Keywords

Navigation