Skip to main content
Log in

Binding of Quercetin to Lysozyme as Probed by Spectroscopic Analysis and Molecular Simulation

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The binding of quercetin to lysozyme (LYSO) in aqueous solution was investigated by fluorescence spectroscopy, UV-vis absorption spectroscopy and molecular simulation at pH 7.4. The fluorescence quenching of LYSO by addition of quercetin is due to static quenching, the binding constants, K a , were 3.63 × 104, 3.31 × 104 and 2.85 × 104 L·mol−1 at 288, 298 and 308 K, respectively. The thermodynamic parameters, enthalpy change, ∆H, and entropy change, ∆S, were noted to be −7.56 kJ·mol−1 and 61.07 J·mol−1·K−1. The results indicated that hydrophobic interaction may play a major role in the binding process. The distance r between the donor (LYSO) and acceptor (quercetin) was determined as 3.34 nm by the fluorescence resonance energy transfer. The synchronous fluorescence spectroscopy showed the polarity around the tryptophan residues increased and the hydrophobicity decreased. Furthermore, the study of molecular simulation indicated that quercetin could bind to the active site (a pocket made up of 24 amino-acid residues) of LYSO mainly via hydrophobic interactions and that there were hydrogen interactions between the residues (Gln 57, Ile 98) of LYSO and quercetin. The accessible surface area (ASA) calculation verified the important roles of tryptophan (Trp) residues during the binding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Christine M, Crespy V, Manach C, Besson C, Demigne C, Remesy C (1998) Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol Regul Integr Comp Physiol 275:212–219

    Google Scholar 

  2. Rusznyak ST, Szent-Gyorgyi A (1936) Vitamin P: flavonols as vitamins. Nature 138:27–27

    Article  CAS  Google Scholar 

  3. Guardia T, Rotelli AE, Juarez AO, Pelzer LE (2001) Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 56:683–687

    Article  PubMed  CAS  Google Scholar 

  4. Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080

    Article  PubMed  CAS  Google Scholar 

  5. Kaldas MI, Walle UK, van der Houde H, McMillan JM, Walle T (2005) Covalent binding of the flavonoid quercetin to human serum albumin. J Agric Food Chem 53:4194–4197

    Article  PubMed  CAS  Google Scholar 

  6. Kanakis CD, Tarantilis PA, Polissiou MG, Diamantoglou S, Tajmir-Riahi HA (2006) Antioxidant flavonoids bind human serum albumin. J Mol Struct 798:69–74

    Article  CAS  Google Scholar 

  7. Rawel HM, Frey SK, Meidtner K, Kroll J, Schweigert FJ (2006) Determining the binding affinities of phenolic compounds to proteins by quenching of the intrinsic tryptophan fluorescence. Mol Nutr Food Res 50:705–713

    Article  PubMed  CAS  Google Scholar 

  8. Rawel HM, Meidtner K, Kroll J (2005) Binding of selected phenolic compounds to proteins. J Agr Food Chem 53:4228–4235

    Article  CAS  Google Scholar 

  9. Gu Z, Zhu X, Ni S, Su Z, Zhou HM (2004) Conformational changes of lysozyme refolding intermediates and implications for aggregation and renaturation. Int J Biochem Cell Biol 36:795–805

    Article  PubMed  CAS  Google Scholar 

  10. Yang F, Liang L (2003) Unfolding of lysozyme induced by urea and guanidine hydrochloride studied by “phase diagram” method of fluorescence. Acta Chim Sinica 61:803–807

    CAS  Google Scholar 

  11. Sanz-Vicente I, Romero JJ, de Marcos S, Ostra M, Ubide C, Galbán J (2009) Simultaneous determination of glucose and choline based on the intrinsic fluorescence of the enzymes. J Fluoresc 19:583–591

    Article  PubMed  CAS  Google Scholar 

  12. Croguennec T, Nau F, Molle D, Le Graet Y, Brule G (2000) Iron and citrate interactions with hen egg white lysozyme. Food Chem 68:29–35

    Article  CAS  Google Scholar 

  13. St. Louis, SYBYL software version 6. 9, Tripos Associates Inc., 2002

  14. Delano WL (2004) PyMOL software, version 0.99, USA, San Carlos

  15. Hubbard SJ, Thornton JM (1993) ‘NACCESS’: computer program, Department of Biochemistry and Molecular Biology, University College London

  16. Li DJ, Zhu JF, Jin J, Yao XJ (2007) Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and simulation. J Mol Struct 846:34–41

    Article  CAS  Google Scholar 

  17. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New York, pp 237–265

    Google Scholar 

  18. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  PubMed  CAS  Google Scholar 

  19. Ware WR (1962) Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J Phys Chem 66:455–458

    Article  CAS  Google Scholar 

  20. Bi SY, Ding L, Tian Y, Song DQ, Zhou X, Liu X et al (2004) Investigation of the interaction between flavonoids and human serum albumin. J Mol Struct 703:37–45

    Article  CAS  Google Scholar 

  21. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  22. Tian J, Liu J, Hu Z, Chen X (2005) Interaction of wogonin with bovine serum albumin. Bioorg Med Chem 13:4124–4129

    Article  PubMed  CAS  Google Scholar 

  23. Rahman MH, Maruyama T, Okada T, Yamasaki K, Otagiri M (1993) Study of interaction of carprofen and its enantiomers with human serum albumin-I: mechanism of binding studied by dialysis and spectroscopic methods. Biochem Pharmacol 46:1721–1731

    Article  PubMed  CAS  Google Scholar 

  24. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58:719–726

    Article  PubMed  CAS  Google Scholar 

  25. Förster T (1965) In: Sinanoglu O (ed) Modern quantum chemistry, vol. 3. Academic, New York, pp 93–137

    Google Scholar 

  26. Valeur B, Brochon JC (2001) New trends in fluorescence spectroscopy. Springer, Berlin, p 25

    Book  Google Scholar 

  27. Eisinger J, Feuer B, Lamola AA (1969) Intramolecular singlet excitation transfer. Applications to polypeptides. Biochemistry 8:3908–3915

    Article  PubMed  CAS  Google Scholar 

  28. Steinberg IZ (1971) Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides. Annu Rev Biochem 40:83–114

    Article  PubMed  CAS  Google Scholar 

  29. Burstein EA, Vedenkina NS, Ivkova MN (1973) Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol 18:263–279

    Article  PubMed  CAS  Google Scholar 

  30. Klajnert B, Bryszewska M (2002) Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Bioelectrochemistry 55:33–35

    Article  PubMed  CAS  Google Scholar 

  31. Hu YJ, Liu Y, Pi ZB, Qu SS (2005) Interaction of cromolyn sodium with human serum albumin: a fluorescence quenching study. Bioorg Med Chem 13:6609–6614

    Article  PubMed  CAS  Google Scholar 

  32. Imoto T, Johnson LN, North ACT, Phillips DC, Rupley JA (1972) In: Boyer PD (ed) The enzymes. Academic, New York, pp 666–868

    Google Scholar 

  33. Hayashi K, Imoto T, Funatsu G, Funatsu M (1965) The position of the active tryptophan residue in lysozyme. J Biochem 58:227–235

    PubMed  CAS  Google Scholar 

  34. Rmoso C, Förster LS (1975) Tryptophan fluorescence lifetimes in lysozyme. J Biol Chem 250:3738–3745

    Google Scholar 

  35. He WY, Li Y, Xue CX, Hu ZD, Chen XG, Sheng FL (2005) Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg Med Chem 13:1837–1845

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant no. 20673034) and the Research Fund for the Doctoral Program of Higher Education of China (Grant no. 20060476001) for their financial supports. In addition, we thank Lanzhou University for supporting the molecular simulation software (Sybyl 6.9) and SGI FUEL workstations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Wang, L., Tang, W. et al. Binding of Quercetin to Lysozyme as Probed by Spectroscopic Analysis and Molecular Simulation. J Fluoresc 21, 1879–1886 (2011). https://doi.org/10.1007/s10895-011-0884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0884-5

Keywords

Navigation