Skip to main content
Log in

Folate Conjugated CdHgTe Quantum Dots with High Targeting Affinity and Sensitivity for In vivo Early Tumor Diagnosis

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

CdHgTe-folate conjugates, acting as novel active-targeting fluorescence probes, were prepared by covalent conjugation of CdHgTe QDs and folic acid. Their characteristics, such as optical spectra, stability and cancer cell targeting were investigated in detail. The fluorescence wavelength of CdHgTe-folate conjugates was 790 nm and a full width at half-maximum (FWHM) of them was 50–70 nm. Their fluorescence stability could satisfy the need of long and continuous fluorescence imaging. The in vivo dynamic bio-distribution of CdHgTe-folate conjugates in S180 tumor beard mouse model was monitored by a NIR imaging system. The resultes indicated that CdHgTe-folate conjugates targeted to tumor effectively. The high fluorescence intensity together with targeting effect makes CdHgTe-folate conjugates promising candidates for imaging, monitoring and early diagnosis of cancer at molecular and cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fottner C, Mettler E, Goetz M, Schirrmacher E, Anlauf M, Strand D, Schirrmacher R, Klöppel G, Delaney P, Schreckenberger M, Galle PR, Neurath MF, Kiesslich R, Weber MM (2010) In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy. Endocrinology 151(5):2179–2188

    Article  PubMed  CAS  Google Scholar 

  2. Zhang J, Jia X, Lv XJ, Deng YL, Xie HY (2010) Fluorescent quantum dot-labeled aptamer bioprobes specifically targeting mouse liver cancer cells. Talanta 81(1–2):505–509

    Article  PubMed  CAS  Google Scholar 

  3. Davis SC, Samkoe KS, O’Hara JA, Gibbs-Strauss SL, Payne HL, Hoopes PJ, Paulsen KD, Pogue BW (2010) MRI-coupled fluorescence tomography quantifies EGFR activity in brain tumors. Acad Radiol 17(3):271–276

    Article  PubMed  Google Scholar 

  4. Do W, Hwang HY, Ko JH, Lee HK, Ryu SH, Song IC, Lee DS, Kim S (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51(1):98–105

    Article  Google Scholar 

  5. Ma J, Fan Q, Wang L, Jia N, Gu Z, Shen H (2010) Synthesis of magnetic and fluorescent bifunctional nanocomposites and their applications in detection of lung cancer cells in humans. Talanta 81(4–5):1162–1169

    Article  PubMed  CAS  Google Scholar 

  6. Boeneman K, Delehanty JB, Susumu K, Stewart MH, Medintz IL (2010) Intracellular bioconjugation of targeted proteins with semiconductor quantum dots. J Am Chem Soc 132(17):5975–5977

    Article  PubMed  CAS  Google Scholar 

  7. Hikage M, Gonda K, Takeda M, Kamei T, Kobayashi M, Kumasaka M, Watanabe M, Satomi S, Ohuchi N (2010) Nano-imaging of the lymph network structure with quantum dots. Nanotechnology 21(18):185103–185110

    Article  PubMed  Google Scholar 

  8. Lim YT, Noh YW, Cho JH, Han JH, Choi BS, Kwon J, Hong KS, Gokarna A, Cho YH, Chung BH (2009) Multiplexed imaging of therapeutic cells with multispectrally encoded magnetofluorescent nanocomposite emulsions. J Am Chem Soc 131(47):17145–17154

    Article  PubMed  CAS  Google Scholar 

  9. Zhang CY, Hu J (2010) Single quantum dot-based nanosensor for multiple DNA detection. Anal Chem 82(5):1921–1927

    Article  PubMed  CAS  Google Scholar 

  10. Xu H, Peng J, Tang HW, Li Y, Wu QS, Zhang ZL, Zhou G, Chen C, Li Y (2009) Hadamard transform spectral microscopy for single cell imaging using organic and quantum dot fluorescent probes. Analyst 134(3):504–511

    Article  PubMed  CAS  Google Scholar 

  11. Pan J, Liu Y, Feng SS (2010) Multifunctional nanoparticles of biodegradable copolymer blend for cancer diagnosis and treatment. Nanomedicine (Lond) 5(3):347–360

    Article  CAS  Google Scholar 

  12. Gao J, Chen K, Xie R, Xie J, Yan Y, Cheng Z, Peng X, Chen X (2010) In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Bioconjug Chem 21(4):604–609

    Article  PubMed  CAS  Google Scholar 

  13. Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D (2010) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm 7(1):94–104

    Article  PubMed  CAS  Google Scholar 

  14. Hwang SY, Cho do Y, Kim HK, Cho SH, Choo J, Yoon WJ, Lee EK (2010) Preparation of targeting proteoliposome by postinsertion of a linker molecule conjugated with recombinant human epidermal growth factor. Bioconjug Chem 21(2):345–351

    Article  PubMed  CAS  Google Scholar 

  15. Chrastina A, Valadon P, Massey KA, Schnitzer JE (2010) Lung vascular targeting using antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis. J Vasc Res 47(6):531–543

    Article  PubMed  CAS  Google Scholar 

  16. Kularatne SA, Low PS (2010) Targeting of nanoparticles: folate receptor. Methods Mol Biol 624:249–265

    Article  PubMed  CAS  Google Scholar 

  17. Kamen BA, Capdevila A (1986) Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci 83:5983–5987

    Article  PubMed  CAS  Google Scholar 

  18. Ke JH, Lin JJ, Carey JR, Chen JS, Chen CY, Wang LF (2010) A specific tumor-targeting magnetofluorescent nanoprobe for dual-modality molecular imaging. Biomaterials 31(7):1707–1715

    Article  PubMed  CAS  Google Scholar 

  19. Zhang J, Deng D, Qian Z, Liu F, Chen X, An L, Gu Y (2010) The targeting behavior of folate-nanohydrogel evaluated by near infrared imaging system in tumor-bearing mouse model. Pharm Res 27(1):46–55

    Article  PubMed  Google Scholar 

  20. Fan L, Li F, Zhang H, Wang Y, Cheng C, Li X, Gu CH, Yang Q, Wu H, Zhang S (2010) Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Biomaterials 31(21):5634–5642

    Article  PubMed  CAS  Google Scholar 

  21. Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate. J Control Release 100(2):247–256

    Article  PubMed  CAS  Google Scholar 

  22. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544

    Article  PubMed  CAS  Google Scholar 

  23. Liu F, Deng D, Chen X, Qian Z, Achilefu S, Gu Y (2010) Folate-polyethylene glycol conjugated near-infrared fluorescence probe with high targeting affinity and sensitivity for in vivo early tumor diagnosis. Mol Imaging Biol Apr 8. [Epub ahead of print]

  24. Gu B, Xie C, Zhu J, He W, Lu W (2010) Folate-PEG-CKK(2)-DTPA, a potential carrier for lymph-metastasized tumor targeting. Pharm Res 27(5):933–942

    Article  PubMed  CAS  Google Scholar 

  25. Kularatne SA, Low PS (2010) Targeting of nanoparticles: folate receptor. Methods Mol Biol 624:249–265

    Article  PubMed  CAS  Google Scholar 

  26. Retnakumari A, Setua S, Menon D, Ravindran P, Muhammed H, Pradeep T, Nair S, Koyakutty M (2010) Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 21(5):055103–055109

    Article  PubMed  Google Scholar 

  27. Mohapatra S, Mallick SK, Maiti TK, Ghosh SK, Pramanik P (2007) Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 18:385102–385111

    Article  Google Scholar 

  28. Chen H, Wang Y, Xu J, Ji J, Zhang J, Hu Y, Gu Y (2008) Non-invasive near infrared fluorescence imaging of CdHgTe quantum dots in mouse model. J Fluoresc 18(15):801–811

    Article  PubMed  CAS  Google Scholar 

  29. Liu L, Zhang J, Su X, Mason PP (2008) Mason in vitro and in vivo assessment of CdTe and CdHgTe toxicity and clearance. J Biomed Nanotechnol 24(4):524–528

    Article  CAS  Google Scholar 

  30. Cai WB, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676

    Article  PubMed  CAS  Google Scholar 

  31. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99(20):12617–12621

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Natural Science Foundation Committee of China (NSFC81000666, NSFC81071194, NSFC30970776, NSFC30700779), the Ministry of Science and Technology (2009ZX09310-004), the Ministry of Education of China and China Pharmaceutical University for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqing Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Li, L., Cui, S. et al. Folate Conjugated CdHgTe Quantum Dots with High Targeting Affinity and Sensitivity for In vivo Early Tumor Diagnosis. J Fluoresc 21, 793–801 (2011). https://doi.org/10.1007/s10895-010-0772-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0772-4

Keywords

Navigation