Skip to main content
Log in

The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging

  • Review Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Very limited number of parameters is available for fluorescence sensing and imaging. The changes of intensity are of low analytical value due to the absence of internal reference. Anisotropy and lifetime sensing have their own limitations. In this respect the λ-ratiometric (based on intensity ratios at two or more wavelengths) recording of spectral changes becomes more popular. Because the spectral changes are connected directly with the variations of interaction energies this approach is seen as the most universal method to study intermolecular interactions. It is applicable for different sensor formats and for obtaining analytical information from cell images. Here we critically analyze different approaches in λ-ratiometric sensing that use single and double fluorescence emitters and are based on different mechanisms producing spectroscopic change. Very promising is the exploration of mechanisms that allow obtaining ratiometric response from a single dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

3HC:

3-hydroxychromone

DLR:

Dual luminophore referencing

ESIPT:

Excited-state intramolecular proton transfer

FRET:

Förster resonance energy transfer

ICT:

Intramolecular charge transfer

LE:

Locally excited

PET:

Photoinduced electron transfer

TICT:

Twisted intramolecular charge transfer

References

  1. Demchenko AP (2009) Introduction to fluorescence sensing. Springer, Amsterdam

    Book  Google Scholar 

  2. Lakowicz JR (2007) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  3. Valeur B (2002) Molecular fluorescence. Wiley VCH, Weinheim

    Google Scholar 

  4. Broder J, Majumder A, Porter E, Srinivasamoorthy G, Keith C, Lauderdale J, Sornborger A (2007) Estimating weak ratiometric signals in imaging data. I. Dual-channel data. J Opt Soc Am A Opt Image Sci Vis 24:2921–2931

    Article  PubMed  Google Scholar 

  5. Sornborger A, Broder J, Majumder A, Srinivasamoorthy G, Porter E, Reagin SS, Keith C, Lauderdale JD (2008) Estimating weak ratiometric signals in imaging data. II. Meta-analysis with multiple, dual-channel datasets. J Opt Soc Am A Opt Image Sci Vis 25:2185–2194

    Article  CAS  PubMed  Google Scholar 

  6. de Silva AP, Gunaratne HQN, Gunnaugsson T, Huxley AJM, McRoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  7. Demchenko AP (2005) Optimization of fluorescence response in the design of molecular biosensors. Anal Biochem 343:1–22

    Article  CAS  PubMed  Google Scholar 

  8. Vogt RFJ, Marti GE, Zenger V (2008) Quantitative fluorescence calibration: a tool for assessing the quality of data obtained by fluorescence measurements. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I: techniques. Springer Verlag, Heidelberg, pp 3–31

    Chapter  Google Scholar 

  9. Demchenko AP (2005) The problem of self-calibration of fluorescence signal in microscale sensor systems. Lab Chip 5:1210–1223

    Article  CAS  PubMed  Google Scholar 

  10. Schaferling M, Duerkop A (2008) Intrinsically referenced fluorimetric sensing and detection schemes: methods, advantages and applications. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I: techniques. Springer Verlag, Heidelberg, pp 373–414

    Chapter  Google Scholar 

  11. Guo XQ, Castellano FN, Li L, Lakowicz JR (1998) Use of a long lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular weight analytes. Anal Chem 70:632–637

    Article  CAS  PubMed  Google Scholar 

  12. Smith DS, Eremin SA (2008) Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem 391:1499–1507

    Article  CAS  PubMed  Google Scholar 

  13. Cruz-Aguado JA, Penner G (2008) Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem 80:8853–8855

    Article  CAS  PubMed  Google Scholar 

  14. Chen X (2003) Fluorescence polarization for single nucleotide polymorphism genotyping. Comb Chem High Throughput Screen 6:213–223

    CAS  PubMed  Google Scholar 

  15. Li Y, Xie W, Fang G (2008) Fluorescence detection techniques for protein kinase assay. Anal Bioanal Chem 390:2049–2057

    Article  CAS  PubMed  Google Scholar 

  16. Owicki JC (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen 5:297–306

    Article  CAS  PubMed  Google Scholar 

  17. Levitt JA, Matthews DR, Ameer-Beg SM, Suhling K (2009) Fluorescence lifetime and polarization-resolved imaging in cell biology. Curr Opin Biotechnol 20:28–36

    Article  CAS  PubMed  Google Scholar 

  18. Maliwal BP, Gryczynski Z, Lakowicz JR (2001) Long-wavelength long-lifetime luminophores. Anal Chem 73:4277–4285

    Article  CAS  PubMed  Google Scholar 

  19. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic, New York

    Google Scholar 

  20. Hoefelschweiger BK, Pfeifer L, Wolfbeis OS (2005) Screening scheme based on measurement of fluorescence lifetime in the nanosecond domain. J Biomol Screen 10:687–694

    Article  CAS  PubMed  Google Scholar 

  21. Povrozin YA, Kolosova OS, Obukhova OM, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD (2009) Seta-633—a NIR fluorescence lifetime label for low-molecular-weight analytes. Bioconjug Chem 20:1807–1812

    Article  CAS  PubMed  Google Scholar 

  22. Berezin MY, Lee H, Akers W, Nikiforovich G, Achilefu S (2007) Ratiometric analysis of fluorescence lifetime for probing binding sites in albumin with near-infrared fluorescent molecular probes. Photochem Photobiol 83:1371–1378

    Article  CAS  PubMed  Google Scholar 

  23. Suhling K, French PM, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4:13–22

    Article  CAS  PubMed  Google Scholar 

  24. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  25. Liebsch G, Klimant I, Krause C, Wolfbeis OS (2001) Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal Chem 73:4354–4363

    Article  CAS  PubMed  Google Scholar 

  26. Tolosa L, Ge XD, Rao G (2003) Reagentless optical sensing of glutamine using a dual-emitting glutamine-binding protein. Anal Biochem 314:199–205

    Article  CAS  PubMed  Google Scholar 

  27. Ge X, Tolosa L, Govind R (2004) Dual-labeled glucose binding protein for ratiometric measurements of glucose. Anal Chem 76:1403–1410

    Article  CAS  PubMed  Google Scholar 

  28. Jayaraman S, Biwersi J, Verkman AS (1999) Synthesis and characterization of dual-wavelength Cl–sensitive fluorescent indicators for ratio imaging. Am J Physiol 276:C747–C757

    CAS  PubMed  Google Scholar 

  29. Koronszi I, Reichert J, Heinzmann G, Ache HJ (1998) Development of submicron optochemical potassium sensor with enhanced stability due to internal reference. Sens Actuators B 51:188–195

    Article  Google Scholar 

  30. Fischer D, Theodorakis EA, Haidekker MA (2007) Synthesis and use of an in-solution ratiometric fluorescent viscosity sensor. Nat Protoc 2:227–236

    Article  CAS  PubMed  Google Scholar 

  31. Jiang GY, Wang S, Yuan WF, Zhao Z, Duan AJ, Xu CM, Jiang L, Song YL, Zhu DB (2007) Photo- and proton-dual-responsive fluorescence switch based on a bisthienylethene-bridged naphthalimide dimer and its application in security data storage. Eur J Org Chem 2064–2067

  32. Park HG, Song JY, Park KH, Kim MH (2006) Fluorescence-based assay formats and signal amplification strategies for DNA microarray analysis. Chem Eng Sci 61:954–965

    Article  CAS  Google Scholar 

  33. Woodroofe CC, Won AC, Lippard SJ (2005) Esterase-activated two-fluorophore system for ratiometric sensing of biological zinc(II). Inorg Chem 44:3112–3120

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Palacios MA, Zyryanov G, Anzenbacher P Jr (2008) Harnessing a ratiometric fluorescence output from a sensor array. Chemistry 14:8540–8546

    Article  CAS  PubMed  Google Scholar 

  35. Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178

    CAS  PubMed  Google Scholar 

  36. Oheim M, Naraghi M, Muller TH, Neher E (1998) Two dye two wavelength excitation calcium imaging: results from bovine adrenal chromaffin cells. Cell Calcium 24:71–84

    Article  CAS  PubMed  Google Scholar 

  37. Tremblay MS, Halim M, Sames D (2007) Cocktails of Tb(3+) and Eu(3+) complexes: a general platform for the design of ratiometric optical probes. J Am Chem Soc 129:7570–7577

    Article  CAS  PubMed  Google Scholar 

  38. Sclafani JA, Maranto MT, Sisk TM, Van Arman SA (2005) A novel mechanism of specificity of response in ratiometric fluorescence sensing of d10 metal ions. Lett Org Chem 2:54–56

    Article  Google Scholar 

  39. Shiraishi Y, Tokitoh Y, Nishimura G, Hirai T (2005) A molecular switch with pH-controlled absolutely switchable dual-mode fluorescence. Org Lett 7:2611–2614

    Article  CAS  PubMed  Google Scholar 

  40. Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan W (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci USA 102:17278–17283

    Article  CAS  PubMed  Google Scholar 

  41. Shiraishi Y, Tokitoh Y, Hirai T (2006) pH- and H2O-driven triple-mode pyrene fluorescence. Org Lett 8:3841–3844

    Article  CAS  PubMed  Google Scholar 

  42. Yang RH, Chan WH, Lee AWM, Xia PF, Zhang HK, Li KA (2003) A ratiometric fluorescent sensor for Ag-1 with high selectivity and sensitivity. J Am Chem Soc 125:2884–2885

    Article  CAS  PubMed  Google Scholar 

  43. Yamana K, Ohshita Y, Fukunaga Y, Nakamura M, Maruyama A (2008) Bis-pyrene-labeled molecular beacon: a monomer-excimer switching probe for the detection of DNA base alteration. Bioorg Med Chem 16:78–83

    Article  CAS  PubMed  Google Scholar 

  44. Fujimoto K, Shimizu H, Inouye M (2004) Unambiguous detection of target DNAs by excimer-monomer switching molecular beacons. J Org Chem 69:3271–3275

    Article  CAS  PubMed  Google Scholar 

  45. Kostenko E, Dobrikov M, Komarova N, Pyshniy D, Vlassov V, Zenkova M (2001) 5′-bis-pyrenylated oligonucleotides display enhanced excimer fluorescence upon hybridization with DNA and RNA. Nucleosides Nucleotides Nucleic Acids 20:1859–1870

    Article  CAS  PubMed  Google Scholar 

  46. Yang Y, Ji S, Zhou F, Zhao J (2009) Synthesis of novel bispyrene diamines and their application as ratiometric fluorescent probes for detection of DNA. Biosens Bioelectron 24:3442–3447

    Article  CAS  PubMed  Google Scholar 

  47. Marti AA, Li X, Jockusch S, Li Z, Raveendra B, Kalachikov S, Russo JJ, Morozova I, Puthanveettil SV, Ju J, Turro NJ (2006) Pyrene binary probes for unambiguous detection of mRNA using time-resolved fluorescence spectroscopy. Nucl Acids Res 34:3161–3168

    Article  CAS  PubMed  Google Scholar 

  48. Prokhorenko IA, Astakhova IV, Momynaliev KT, Zatsepin TS, Korshun VA (2009) Phenylethynylpyrene excimer forming hybridization probes for fluorescence SNP detection. Methods Mol Biol 578:209–222

    Article  CAS  PubMed  Google Scholar 

  49. Zhang R, Tang D, Lu P, Yang X, Liao D, Zhang Y, Zhang M, Yu C, Yam VW (2009) Nucleic acid-induced aggregation and pyrene excimer formation. Org Lett 11:4302–4305

    Article  CAS  PubMed  Google Scholar 

  50. Sahoo D, Narayanaswami V, Kay CM, Ryan RO (2000) Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III. Biochemistry 39:6594–6601

    Article  CAS  PubMed  Google Scholar 

  51. Pu SZ, Yang TS, Xu JK, Shen L, Li GZ, Xiao Q, Chen B (2005) Syntheses and optoelectronic properties of four photochromic dithienylethenes. Tetrahedron 61:6623–6629

    Article  CAS  Google Scholar 

  52. Narita M, Mima S, Ogawa N, Hamada F (2001) Fluorescent molecular sensory system based on bis pyrene-modified gamma-cyclodextrin dimer for steroids and endocrine disruptors. Anal Sci 17:379–385

    Article  CAS  PubMed  Google Scholar 

  53. Filby MH, Dickson SJ, Zaccheroni N, Prodi L, Bonacchi S, Montalti M, Paterson MJ, Humphries TD, Chiorboli C, Steed JW (2008) Induced fit interanion discrimination by binding-induced excimer formation. J Am Chem Soc 130:4105–4113

    Article  CAS  PubMed  Google Scholar 

  54. Schazmann B, Alhashimy N, Diamond D (2006) Chloride selective calix[4]arene optical sensor combining urea functionality with pyrene excimer transduction. J Am Chem Soc 128:8607–8614

    Article  CAS  PubMed  Google Scholar 

  55. Ji HF, Yang Y, Xu X, Brown G (2006) A calixarene based fluorescent Sr2+ and Ca2+ probe. Org Biomol Chem 4:770–772

    Article  CAS  PubMed  Google Scholar 

  56. Kim JS, Choi MG, Song KC, No KT, Ahn S, Chang SK (2007) Ratiometric determination of Hg2+ ions based on simple molecular motifs of pyrene and dioxaoctanediamide. Org Lett 9:1129–1132

    Article  CAS  PubMed  Google Scholar 

  57. Hamdi A, Kim SH, Abidi R, Thue P, Kim JS, Vicens J (2009) A dipyrenyl calixazacrown chemosensor for Mg. Tetrahedron 65:2818–2823

    Article  CAS  Google Scholar 

  58. Fujimoto K, Muto Y, Inouye M (2008) A DNA duplex-based, tailor-made fluorescent sensor for porphyrin derivatives. Bioconjug Chem 19:1132–1134

    Article  CAS  PubMed  Google Scholar 

  59. Collado D, Perez-Inestrosa E, Suau R, Desvergne JP, Bouas-Laurent H (2002) Bis(isoquinoline N-oxide) pincers as a new type of metal cation dual channel fluorosensor. Org Lett 4:855–858

    Article  CAS  PubMed  Google Scholar 

  60. Hu JT, Li LS, Yang WD, Manna L, Wang LW, Alivisatos AP (2001) Linearly polarized emission from colloidal semiconductor quantum rods. Science 292:2060–2063

    Article  CAS  PubMed  Google Scholar 

  61. Yuasa H, Miyagawa N, Izumi T, Nakatani M, Izumi M, Hashimoto H (2004) Hinge sugar as a movable component of an excimer fluorescence sensor. Org Lett 6:1489–1492

    Article  CAS  PubMed  Google Scholar 

  62. Jung HS, Park M, Han DY, Kim E, Lee C, Ham S, Kim JS (2009) Cu2+ ion-induced self-assembly of pyrenylquinoline with a pyrenyl excimer formation. Org Lett 11:3378–3381

    Article  CAS  PubMed  Google Scholar 

  63. Yu C, Yam VW (2009) Glucose sensing via polyanion formation and induced pyrene excimer emission. Chem Commun (Camb) 1347–1349

  64. Marti AA, Jockusch S, Stevens N, Ju J, Turro NJ (2007) Fluorescent hybridization probes for sensitive and selective DNA and RNA detection. Acc Chem Res 40:402–409

    Article  CAS  PubMed  Google Scholar 

  65. Bichenkova EV, Gbaj A, Walsh L, Savage HE, Rogert C, Sardarian AR, Etchells LL, Douglas KT (2007) Detection of nucleic acids in situ: novel oligonucleotide analogues for target-assembled DNA-mounted exciplexes. Org Biomol Chem 5:1039–1051

    Article  CAS  PubMed  Google Scholar 

  66. Clegg RM (1996) Fluorescence resonance energy transfer. In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, New York, pp 179–252

    Google Scholar 

  67. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734

    Article  CAS  PubMed  Google Scholar 

  68. Roda A, Guardigli M, Michelini E, Mirasoli M (2009) Nanobioanalytical luminescence: forster-type energy transfer methods. Anal Bioanal Chem 393:109–123

    Article  CAS  PubMed  Google Scholar 

  69. Wu PG, Brand L (1994) Resonance energy-transfer—methods and applications. Anal Biochem 218:1–13

    Article  CAS  PubMed  Google Scholar 

  70. Merzlyakov M, Chen L, Hristova K (2007) Studies of receptor tyrosine kinase transmembrane domain interactions: the EmEx-FRET method. J Membr Biol 215:93–103

    Article  CAS  PubMed  Google Scholar 

  71. Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17:19–42

    Article  CAS  PubMed  Google Scholar 

  72. Hildebrandt N, Charbonniere LJ, Lohmannsroben HG (2007) Time-resolved analysis of a highly sensitive forster resonance energy transfer immunoassay using terbium complexes as donors and quantum dots as acceptors. J Biomed Biotechnol 2007:79169

    PubMed  Google Scholar 

  73. Petitjean A, Lehn JM (2007) Conformational switching of the pyridine-pyrimidine-pyridine scaffold for ion-controlled FRET. Inorg Chim Acta 360:849–856

    Article  CAS  Google Scholar 

  74. Gershkovich AA, Kholodovych VV (1996) Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer (IFETS). J Biochem Biophys Methods 33:135–162

    Article  CAS  PubMed  Google Scholar 

  75. Takakusa H, Kikuchi K, Urano Y, Sakamoto S, Yamaguchi K, Nagano T (2002) Design and synthesis of an enzyme-cleavable sensor molecule for phosphodiesterase activity based on fluorescence resonance energy transfer. J Am Chem Soc 124:1653–1657

    Article  CAS  PubMed  Google Scholar 

  76. Xu H, Wu HP, Huang F, Song SP, Li WX, Cao Y, Fan CH (2005) Magnetically assisted DNA assays: high selectivity using conjugated polymers for amplified fluorescent transduction. Nucl Acids Res 33:e83

    Google Scholar 

  77. Loudet A, Bandichhor R, Wu L, Burgess K (2008) Functionalized BF(2) chelated azadipyrromethene dyes. Tetrahedron 64:3642–3654

    Article  CAS  PubMed  Google Scholar 

  78. Kim TG, Castro JC, Loudet A, Jiao JG, Hochstrasser RM, Burgess K, Topp MR (2006) Correlations of structure and rates of energy transfer for through-bond energy-transfer cassettes. J Phys Chem A 110:20–27

    Article  CAS  PubMed  Google Scholar 

  79. Guliyev R, Coskun A, Akkaya EU (2009) Design strategies for ratiometric chemosensors: modulation of excitation energy transfer at the energy donor site. J Am Chem Soc 131:9007–9013

    Article  CAS  PubMed  Google Scholar 

  80. Didenko VV (2001) DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. Biotechniques 31:1106–1116, 1118, 1120-1

    CAS  PubMed  Google Scholar 

  81. Ueberfeld J, Walt DR (2004) Reversible ratiometric probe for quantitative DNA measurements. Anal Chem 76:947–952

    Article  CAS  PubMed  Google Scholar 

  82. Yang CJ, Martinez K, Lin H, Tan W (2006) Hybrid molecular probe for nucleic acid analysis in biological samples. J Am Chem Soc 128:9986–9987

    Article  CAS  PubMed  Google Scholar 

  83. Serin JM, Brousmiche DW, Frechet JMJ (2002) Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem Commun 2605–2607

  84. Haustein E, Jahnz M, Schwille P (2003) Triple FRET: a tool for studying long-range molecular interactions. Chemphyschem 4:745–748

    Article  CAS  PubMed  Google Scholar 

  85. Wang S, Gaylord BS, Bazan GC (2004) Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes. J Am Chem Soc 126:5446–5451

    Article  CAS  PubMed  Google Scholar 

  86. Aneja A, Mathur N, Bhatnagar PK, Mathur PC (2008) Triple-FRET technique for energy transfer between conjugated polymer and TAMRA dye with possible applications in medical diagnostics. J Biol Phys 34:487–493

    Article  CAS  PubMed  Google Scholar 

  87. Wang L, Wang KM, Santra S, Zhao XJ, Hilliard LR, Smith JE, Wu JR, Tan WH (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654

    Article  Google Scholar 

  88. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    Article  CAS  PubMed  Google Scholar 

  89. Caminade AM, Padie C, Laurent R, Maraval A, Majoral JP (2006) Uses of dendrimers for DNA microarrays. Sensors 6:901–914

    Article  CAS  Google Scholar 

  90. Lu L, Helgeson R, Jones RM, McBranch D, Whitten D (2002) Superquenching in cyanine pendant poly(L-lysine) dyes: dependence on molecular weight, solvent, and aggregation. J Am Chem Soc 124:483–488

    Article  CAS  PubMed  Google Scholar 

  91. Johansson MK, Cook RM (2003) Intramolecular dimers: a new design strategy for fluorescence-quenched probes. Chemistry 9:3466–3471

    Article  CAS  PubMed  Google Scholar 

  92. Chen CH, Liu KY, Sudhakar S, Lim TS, Fann W, Hsu CP, Luh TY (2005) Efficient light harvesting and energy transfer in organic-inorganic hybrid multichromophoric materials. J Phys Chem B 109:17887–17891

    Article  CAS  PubMed  Google Scholar 

  93. Charbonniere LJ, Hildebrandt N, Ziessel RF, Lohmannsroben HG (2006) Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy. J Am Chem Soc 128:12800–12809

    Article  CAS  PubMed  Google Scholar 

  94. Frigoli M, Ouadahi K, Larpent C (2009) A cascade FRET-mediated ratiometric sensor for Cu2+ ions based on dual fluorescent ligand-coated polymer nanoparticles. Chemistry 15:8319–8330

    Article  CAS  PubMed  Google Scholar 

  95. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  CAS  PubMed  Google Scholar 

  96. Van Munster EB, Kremers GJ, Adjobo-Hermans MJ, Gadella TW Jr (2005) Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J Microsc 218:253–262

    Article  PubMed  Google Scholar 

  97. Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J Am Chem Soc 124:7481–7489

    Article  CAS  PubMed  Google Scholar 

  98. Yildiz I, Deniz E, Raymo FM (2009) Fluorescence modulation with photochromic switches in nanostructured constructs. Chem Soc Rev 38:1859–1867

    Article  CAS  PubMed  Google Scholar 

  99. Raymo FM, Tomasulo M (2005) Fluorescence modulation with photochromic switches. J Phys Chem A 109:7343–7352

    Article  CAS  PubMed  Google Scholar 

  100. Bahr JL, Kodis G, de la Garza L, Lin S, Moore AL, Moore TA, Gust D (2001) Photoswitched singlet energy transfer in a porphyrin-spiropyran dyad. J Am Chem Soc 123:7124–7133

    Article  CAS  PubMed  Google Scholar 

  101. Zhu L, Zhu MQ, Hurst JK, Li AD (2005) Light-controlled molecular switches modulate nanocrystal fluorescence. J Am Chem Soc 127:8968–8970

    Article  CAS  PubMed  Google Scholar 

  102. Zhang S, Zhang Q, Ye B, Li X, Zhang X, Deng Y (2009) Photochromism of spiropyran in ionic liquids: enhanced fluorescence and delayed thermal reversion. J Phys Chem B 113:6012–6019

    Article  CAS  PubMed  Google Scholar 

  103. Yao S, Schafer-Hales KJ, Belfield KD (2007) A new water-soluble near-neutral ratiometric fluorescent pH indicator. Org Lett 9:5645–5648

    Article  CAS  PubMed  Google Scholar 

  104. Povrozin YA, Markova LI, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD (2009) Near-infrared, dual-ratiometric fluorescent label for measurement of pH. Anal Biochem 390:136–140

    Article  CAS  PubMed  Google Scholar 

  105. Takakusa H, Kikuchi K, Urano Y, Kojima H, Nagano T (2003) A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral. Chemistry 9:1479–1485

    Article  CAS  PubMed  Google Scholar 

  106. Snee PT, Somers RC, Nair G, Zimmer JP, Bawendi MG, Nocera DG (2006) A ratiometric CdSe/ZnS nanocrystal pH sensor. J Am Chem Soc 128:13320–13321

    Article  CAS  PubMed  Google Scholar 

  107. Alamiry MAH, Harriman A, Mallon LJ, Ulrich G, Ziessel R (2008) Energy- and charge-transfer processes in a perylene–BODIPY–pyridine tripartite array. Eur J Org Chem 2774–2782

  108. Han J, Loudet A, Barhoumi R, Burghardt RC, Burgess K (2009) A ratiometric pH reporter for imaging protein-dye conjugates in living cells. J Am Chem Soc 131:1642–1643

    Article  CAS  PubMed  Google Scholar 

  109. Coskun A, Akkaya EU (2006) Signal ratio amplification via modulation of resonance energy transfer: proof of principle in an emission ratiometric Hg(II) sensor. J Am Chem Soc 128:14474–14475

    Article  CAS  PubMed  Google Scholar 

  110. Forde TS, Hanley QS (2005) Following FRET through five energy transfer steps: spectroscopic photobleaching, recovery of spectra, and a sequential mechanism of FRET. Photochem Photobiol Sci 4:609–616

    Article  CAS  PubMed  Google Scholar 

  111. Brown M, Edmonds T, Miller J, Seare N (1993) Use of Nile Red as a long-wavelength fluorophore in dual-probe studies of ligand–protein interactions. J Fluoresc 3:129–130

    Article  CAS  Google Scholar 

  112. Levitsky IA, Krivoshlykov SG, Grate JW (2001) Signal amplification in multichromophore luminescence-based sensors. J Phys Chem B 105:8468–8473

    Article  CAS  Google Scholar 

  113. Kikuchi K, Takakusa H, Nagano T (2004) Recent advances in the design of small molecule-based FRET sensors for cell biology. Trends Anal Chem 23:407–415

    Article  CAS  Google Scholar 

  114. Gonzalez JE, Tsien RY (1997) Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. Chem Biol 4:269–277

    Article  CAS  PubMed  Google Scholar 

  115. Miyawaki A, Nagai T, Mizuno H (2005) Engineering fluorescent proteins. Adv Biochem Eng Biotechnol 95:1–15

    CAS  PubMed  Google Scholar 

  116. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  117. Tsien RY (2005) Building and breeding molecules to spy on cells and tumors. FEBS Lett 579:927–932

    Article  CAS  PubMed  Google Scholar 

  118. Ai HW, Hazelwood KL, Davidson MW, Campbell RE (2008) Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5:401–403

    Article  CAS  PubMed  Google Scholar 

  119. Carlson HJ, Campbell RE (2009) Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging. Curr Opin Biotechnol 20:19–27

    Article  CAS  PubMed  Google Scholar 

  120. Selvin PR (2002) Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct 31:275–302

    Article  CAS  PubMed  Google Scholar 

  121. Thomas SW 3rd, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  CAS  PubMed  Google Scholar 

  122. Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618

    Article  CAS  PubMed  Google Scholar 

  123. Medintz IL, Mattoussi H (2009) Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11:17–45

    Article  CAS  PubMed  Google Scholar 

  124. Ho HA, Dore K, Boissinot M, Bergeron MG, Tanguay RM, Boudreau D, Leclerc M (2005) Direct molecular detection of nucleic acids by fluorescence signal amplification. J Am Chem Soc 127:12673–12676

    Article  CAS  PubMed  Google Scholar 

  125. Pu KY, Liu B (2009) Optimizing the cationic conjugated polymer-sensitized fluorescent signal of dye labeled oligonucleotide for biosensor applications. Biosens Bioelectron 24:1067–1073

    Article  CAS  PubMed  Google Scholar 

  126. Morrison LE (1988) Time-resolved detection of energy transfer: theory and application to immunoassays. Anal Biochem 174:101–120

    Article  CAS  PubMed  Google Scholar 

  127. Hemmila I, Laitala V (2005) Progress in lanthanides as luminescent probes. J Fluoresc 15:529–542

    Article  CAS  PubMed  Google Scholar 

  128. Makarov NS, Drobizhev M, Rebane A (2008) Two-photon absorption standards in the 550–1600 nm excitation wavelength range. Opt Express 16:4029–4047

    Article  CAS  PubMed  Google Scholar 

  129. Shakin VA, Abe S (1994) Two-photon absorption in conjugated polymers: contributions of excitonic and biexcitonic states. Phys Rev B Condens Matter 50:4306–4315

    CAS  PubMed  Google Scholar 

  130. Wang T, Chen JY, Zhen S, Wang PN, Wang CC, Yang WL, Peng Q (2009) Thiol-capped CdTe quantum dots with two-photon excitation for imaging high autofluorescence background living cells. J Fluoresc 19:615–621

    Article  CAS  PubMed  Google Scholar 

  131. Palsson LO, Pal R, Murray BS, Parker D, Beeby A (2007) Two-photon absorption and photoluminescence of europium based emissive probes for bioactive systems. Dalton Trans 48:5726–5734

    Article  PubMed  CAS  Google Scholar 

  132. Tian N, Xu Q-H (2007) Enhanced two-photon excitation fluorescence by fluorescence resonance energy transfer using conjugated polymers. Adv Mater 19:1988–1991

    Article  CAS  Google Scholar 

  133. LaMorte VJ, Zoumi A, Tromberg BJ (2003) Spectroscopic approach for monitoring two-photon excited fluorescence resonance energy transfer from homodimers at the subcellular level. J Biomed Opt 8:357–361

    Article  CAS  PubMed  Google Scholar 

  134. Acharya JR, Zhang H, Li X, Nesterov EE (2009) Chemically controlled amplified ratiometric fluorescence in surface-immobilized end-capped oligo(p-phenylene ethynylene)s. J Am Chem Soc 131:880–881

    Article  CAS  PubMed  Google Scholar 

  135. Demchenko AP (2005) The future of fluorescence sensor arrays. Trends Biotechnol 23:456–460

    Article  CAS  PubMed  Google Scholar 

  136. Whitaker JE, Haugland RP, Prendergast FG (1991) Spectral and photophysical studies of benzo[c]xanthene dyes: dual emission pH sensors. Anal Biochem 194:330–344

    Article  CAS  PubMed  Google Scholar 

  137. Papkovsky DB, O’Riordan TC (2005) Emerging applications of phosphorescent metalloporphyrins. J Fluoresc 15:569–584

    Article  CAS  PubMed  Google Scholar 

  138. Castellano FN, Dattelbaum JD, Lakowicz JR (1998) Long-lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups. Anal Biochem 255:165–170

    Article  CAS  PubMed  Google Scholar 

  139. O’Neal DP, Meledeo MA, Davis JR, Ibey BL, Gant VA, Pishko MV, Cote GL (2004) Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly(ethylene glycol) hydrogel. IEEE Sens J 4:728–734

    Article  CAS  Google Scholar 

  140. Hochreiner H, Sanchez-Barragan I, Costa-Fernandez JM, Sanz-Medel A (2005) Dual emission probe for luminescence oxygen sensing: a critical comparison between intensity, lifetime and ratiometric measurements. Talanta 66:611–618

    Article  CAS  PubMed  Google Scholar 

  141. Wade SA, Collins SF, Baxter GW (2003) Fluorescence intensity ratio technique for optical fiber point temperature sensing. J Appl Physi 94:4743–4756

    Article  CAS  Google Scholar 

  142. Wu C, Bull B, Christensen K, McNeill J (2009) Ratiometric single-nanoparticle oxygen sensors for biological imaging. Angew Chem Int Ed Engl 48:2741–2745

    Article  CAS  PubMed  Google Scholar 

  143. Zhang G, Palmer GM, Dewhirst MW, Fraser CL (2009) A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat Mater 8:747–751

    Article  CAS  PubMed  Google Scholar 

  144. Laws WR, Brand L (1979) Analysis of two-state excited-state reactions. The fluorescence decay of 2-naphthol. J Phys Chem 83:795–802

    Article  CAS  Google Scholar 

  145. Davenport LD, Knutson JR, Brand L (1986) Excited-state proton transfer of equilenin and dihydro equilenin: inreractions with bilayer vesicles. Biochemistry 25:1186–1195

    Article  CAS  PubMed  Google Scholar 

  146. Mordon S, Devoisselle JM, Soulie S (1995) Fluorescence spectroscopy of pH in vivo using a dual-emission fluorophore (C-SNAFL-1). J Photochem Photobiol B 28:19–23

    Article  CAS  PubMed  Google Scholar 

  147. Valuk VR, Duportail G, Pivovarenko VG (2005) A wide-range fluorescent pH-indicator based on 3-hydroxyflavone structure. J Photochem Photobiol A 175:226–231

    Article  CAS  Google Scholar 

  148. Niu CG, Gui XQ, Zeng GM, Yuan XZ (2005) A ratiometric fluorescence sensor with broad dynamic range based on two pH-sensitive fluorophores. Analyst 130:1551–1556

    Article  CAS  PubMed  Google Scholar 

  149. McAnaney TB, Park ES, Hanson GT, Remington SJ, Boxer SG (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics. Biochemistry 41:15489–15494

    Article  CAS  PubMed  Google Scholar 

  150. McAnaney TB, Shi X, Abbyad P, Jung H, Remington SJ, Boxer SG (2005) Green fluorescent protein variants as ratiometric dual emission pH sensors. 3. Temperature dependence of proton transfer. Biochemistry 44:8701–8711

    Article  CAS  PubMed  Google Scholar 

  151. Pal R, Parker D (2007) A single component ratiometric pH probe with long wavelength excitation of europium emission. Chem Commun 474–476

  152. Henary MM, Wu YG, Cody J, Sumalekshmy S, Li J, Mandal S, Fahrni CJ (2007) Excited-state intramolecular proton transfer in 2-(2 ′-arylsulfonamidophenyl)-benzimidazole derivatives: The effect of donor and acceptor substituents. J Org Chem 72:4784–4797

    Article  CAS  PubMed  Google Scholar 

  153. Klymchenko AS, Demchenko AP (2004) 3-Hydroxychromone dyes exhibiting excited-state intramolecular proton transfer in water with efficient two-band fluorescence. New J Chem 28:687–692

    Article  CAS  Google Scholar 

  154. Xu Z, Qian X, Cui J (2005) Colorimetric and ratiometric fluorescent chemosensor with a large red-shift in emission: Cu(II)-only sensing by deprotonation of secondary amines as receptor conjugated to naphthalimide fluorophore. Org Lett 7:3029–3032

    Article  CAS  PubMed  Google Scholar 

  155. Wang S-L, Lee T-C, Ho T-I (2002) Excited state proton transfer and steric effect on the hydrogen bonding interaction of the styrylquinoline system. J Photochem Photobiol A: Chem 151:21–26

    Article  CAS  Google Scholar 

  156. Druzhinin SI, Kovalenko SA, Senyushkina TA, Demeter A, Januskevicius R, Mayer P, Stalke D, Machinek R, Zachariasse KA (2009) Intramolecular charge transfer with 4-fluorofluorazene and the flexible 4-fluoro-N-phenylpyrrole. J Phys Chem A 113:9304–9320

    Article  CAS  PubMed  Google Scholar 

  157. Jozefowicz M, Heldt JR (2003) Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures. Chem Phys 294:105–116

    Article  CAS  Google Scholar 

  158. Suppan P, Ghoneim N (1997) Solvatochromism. Royal Society of Chemistry, Cambridge

    Google Scholar 

  159. Balter A, Nowak W, Pawelkiewicz W, Kowalczyk A (1988) Some remarks on the interpretation of the spectral properties of prodan. Chem Phys Lett 143:565–570

    Article  CAS  Google Scholar 

  160. Catalan J, Perez P, Laynez J, Garcia-Blanco F (1991) Analysis of the solvent effect on the photophysics properties of 6-propionyl-2-(dimethylamino)naphthalene (PRODAN). J Fluoresc 4:215–223

    Article  Google Scholar 

  161. Moyano F, Biasutti MA, Silber JJ, Correa NM (2006) New insights on the behavior of PRODAN in homogeneous media and in large unilamellar vesicles. J Phys Chem B 110:11838–11846

    Article  CAS  PubMed  Google Scholar 

  162. Pivovarenko VG, Klueva AV, Doroshenko AO, Demchenko AP (2000) Bands separation in fluorescence spectra of ketocyanine dyes: evidence for their complex formation with monohydric alcohols. Chem Phys Lett 325:389–398

    Article  CAS  Google Scholar 

  163. Samant V, Singh AK, Ramakrishna G, Ghosh HN, Ghanty TK, Palit DK (2005) Ultrafast intermolecular hydrogen bond dynamics in the excited state of fluorenone. J Phys Chem A 109:8693–8704

    Article  CAS  PubMed  Google Scholar 

  164. Shynkar VV, Klymchenko AS, Piemont E, Demchenko AP, Mely Y (2004) Dynamics of intermolecular hydrogen bonds in the excited states of 4 ′-dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor. J Phys Chem A 108:8151–8159

    Article  CAS  Google Scholar 

  165. Yuan MS, Liu ZQ, Fang Q (2007) Donor-and-acceptor substituted truxenes as multifunctional fluorescent probes. J Org Chem 72:7915–7922

    Article  CAS  PubMed  Google Scholar 

  166. Eggeling C, Widengren J, Rigler R, Seidel CAM (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70:2651–2659

    Article  CAS  Google Scholar 

  167. Ercelen S, Klymchenko AS, Demchenko AP (2002) Ultrasensitive fluorescent probe for the hydrophobic range of solvent polarities. Anal Chim Acta 464:273–287

    Article  CAS  Google Scholar 

  168. Liu X, Tan W (1999) A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Anal Chem 71:5054–5059

    Article  CAS  PubMed  Google Scholar 

  169. Kameta N, Hiratani K (2006) Fluorescence-responsive H2PO4- receptor based on macrocyclic boron complex. Chem Lett 35:536–537

    Article  CAS  Google Scholar 

  170. Chung YM, Raman B, Kim DS, Ahn KH (2006) Fluorescence modulation in anion sensing by introducing intramolecular H-bonding interactions in host-guest adducts. Chem Commun 186–188

  171. Hennrich G, Sonnenschein H, Resch-Genger U (2001) Fluorescent anion receptors with iminoylthiourea binding sites—Selective hydrogen bond mediated recognition of CO32-, HCO3- and HPO42. Tetrahedron Lett 42:2805–2808

    Article  CAS  Google Scholar 

  172. Gunnlaugsson T, Ali HDP, Glynn M, Kruger PE, Hussey GM, Pfeffer FM, dos Santos CMG, Tierney J (2005) Fluorescent photoinduced electron transfer (PET) sensors for anions; From design to potential application. J Fluoresc 15:287–299

    Article  CAS  PubMed  Google Scholar 

  173. Kovalchuk A, Bricks JL, Reck G, Rurack K, Schulz B, Szumna A, Weisshoff H (2004) A charge transfer-type fluorescent molecular sensor that “lights up” in the visible upon hydrogen bond-assisted complexation of anions. Chem Commun 1946–1947

  174. Maroncelli M, Macinnis J, Fleming GR (1989) Polar solvent dynamics and electron-transfer reactions. Science 243:1674–1681

    Article  CAS  PubMed  Google Scholar 

  175. Demchenko AP, Sytnik AI (1991) Site selectivity in excited-state reactions in solutions. J Phys Chem 95:10518–10524

    Article  CAS  Google Scholar 

  176. Demchenko AP, Sytnik AI (1991) Solvent reorganizational red-edge effect in intramolecular electron-transfer. Proc Natl Acad Sci USA 88:9311–9314

    Article  CAS  PubMed  Google Scholar 

  177. Noukakis D, Suppan P (1991) Photophysics of aminophthalimides in solution. 1. Steady-state spectroscopy. J Lumin 47:285–295

    Article  CAS  Google Scholar 

  178. Stalin T, Rajendiran N (2005) Effects of solvent, pH and beta-cyclodextrin on the photophysical properties of 4-hydroxy-3, 5-dimethoxybenzaldehyde: intramolecular charge transfer associated with hydrogen bonding effect. Spectrochim Acta A 61:3087–3096

    Article  CAS  Google Scholar 

  179. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  180. Sumalekshmy S, Henary MM, Siegel N, Lawson PV, Wu Y, Schmidt K, Bredas JL, Perry JW, Fahrni CJ (2007) Design of emission ratiometric metal-ion sensors with enhanced two-photon cross section and brightness. J Am Chem Soc 129:11888–11889

    Article  CAS  PubMed  Google Scholar 

  181. Liu L-H, Zhang H, Li A-F, Xieb J-W, Jianga Y-B (2006) Intramolecular charge transfer dual fluorescent sensors from 4-(dialkylamino)benzanilides with metal binding site within electron acceptor. Tetrahedron 62:10441–10449

    Article  CAS  Google Scholar 

  182. Xu Z, Xiao Y, Qian X, Cui J, Cui D (2005) Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org Lett 7:889–892

    Article  CAS  PubMed  Google Scholar 

  183. Nolan EM, Lippard SJ (2007) Turn-on and ratiometric mercury sensing in water with a red-emitting probe. J Am Chem Soc 129:5910–5918

    Article  CAS  PubMed  Google Scholar 

  184. Zhang Y, Guo X, Si W, Jia L, Qian X (2008) Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethylamino chain as receptor. Org Lett 10:473–476

    Article  CAS  PubMed  Google Scholar 

  185. Roussakis E, Voutsadaki S, Pinakoulaki E, Sideris DP, Tokatlidis K, Katerinopoulos HE (2008) ICPBCZin: a red emitting ratiometric fluorescent indicator with nanomolar affinity for Zn2+ ions. Cell Calcium 44:270–275

    Article  CAS  PubMed  Google Scholar 

  186. Taki M, Wolford JL, O’Halloran TV (2004) Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy. J Am Chem Soc 126:712–713

    Article  CAS  PubMed  Google Scholar 

  187. Mizukami S, Okada S, Kimura S, Kikuchi K (2009) Design and synthesis of coumarin-based Zn(2+) probes for ratiometric fluorescence imaging. Inorg Chem 48:7630–7638

    Article  CAS  PubMed  Google Scholar 

  188. Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J, Sun S, Xu T (2007) A selective fluorescent sensor for imaging Cd2+ in living cells. J Am Chem Soc 129:1500–1501

    Article  CAS  PubMed  Google Scholar 

  189. Kiyose K, Aizawa S, Sasaki E, Kojima H, Hanaoka K, Terai T, Urano Y, Nagano T (2009) Molecular design strategies for near-infrared ratiometric fluorescent probes based on the unique spectral properties of aminocyanines. Chemistry 15:9191–9200

    Article  CAS  PubMed  Google Scholar 

  190. Atilgan S, Ozdemir T, Akkaya EU (2008) A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl-bodipy fluorophore. Org Lett 10:4065–4067

    Article  CAS  PubMed  Google Scholar 

  191. Shao J, Lin H, Lin H (2008) Rational design of a colorimetric and ratiometric fluorescent chemosensor based on intramolecular charge transfer (ICT). Talanta 77:273–277

    Article  CAS  PubMed  Google Scholar 

  192. Wen Z-C, Jiang Y-B (2004) Ratiometric dual fluorescent receptors for anions under intramolecular charge transfer mechanism. Tetrahedron 60:11109–11115

    Article  CAS  Google Scholar 

  193. Thiagarajan V, Ramamurthy P, Thirumalai D, Ramakrishnan VT (2005) A novel colorimetric and fluorescent chemosensor for anions involving PET and ICT pathways. Org Lett 7:657–660

    Article  CAS  PubMed  Google Scholar 

  194. Badugu R, Lakowicz JR, Geddes CD (2004) Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing. Anal Biochem 327:82–90

    Article  CAS  PubMed  Google Scholar 

  195. Lin W, Long L, Yuan L, Cao Z, Chen B, Tan W (2008) A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Org Lett 10:5577–5580

    Article  CAS  PubMed  Google Scholar 

  196. Lin W, Long L, Chen B, Tan W (2009) A ratiometric fluorescent probe for hypochlorite based on a deoximation reaction. Chemistry 15:2305–2309

    Article  CAS  PubMed  Google Scholar 

  197. Mader HS, Wolfbeis OS (2008) Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim Acta 162:1–34

    Article  CAS  Google Scholar 

  198. Di Cesare N, Lakowicz JR (2001) Wavelength-ratiometric probes for saccharides based on donor–acceptor diphenylpolyenes. J Photochem Photobiol A Chem 143:39–47

    Article  Google Scholar 

  199. Zhang Y, Gao X, Hardcastle K, Wang B (2006) Water-soluble fluorescent boronic acid compounds for saccharide sensing: substituent effects on their fluorescence properties. Chemistry 12:1377–1384

    Article  CAS  PubMed  Google Scholar 

  200. de Lorimier RM, Smith JJ, Dwyer MA, Looger LL, Sali KM, Paavola CD, Rizk SS, Sadigov S, Conrad DW, Loew L, Hellinga HW (2002) Construction of a fluorescent biosensor family. Protein Sci 11:2655–2675

    Article  PubMed  CAS  Google Scholar 

  201. Okamoto A, Tainaka K, Nishiza K, Saito I (2005) Monitoring DNA structures by dual fluorescence of pyrene derivatives. J Am Chem Soc 127:13128–13129

    Article  CAS  PubMed  Google Scholar 

  202. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4031

    Article  PubMed  Google Scholar 

  203. Shaikh M, Mohanty J, Bhasikuttan AC, Pal H (2008) Tuning dual emission behavior of p-dialkylaminobenzonitriles supramolecular interactions with cyclodextrin hosts. Photochem Photobiol Sci 7:979–985

    Article  CAS  PubMed  Google Scholar 

  204. Bublitz GU, Boxer SG (1997) Stark spectroscopy: applications in chemistry, biology, and materials science. Annu Rev Phys Chem 48:213–242

    Article  CAS  PubMed  Google Scholar 

  205. Gross E, Bedlack RS, Loew LM (1994) Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J 67:208–216

    Article  CAS  PubMed  Google Scholar 

  206. Clarke RJ (2001) The dipole potential of phospholipid membranes and methods for its detection. Adv Colloid Interface Sci 89–90:263–281

    Article  PubMed  Google Scholar 

  207. Klymchenko AS, Duportail G, Mely Y, Demchenko AP (2003) Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proc Natl Acad Sci USA 100:11219–11224

    Article  CAS  PubMed  Google Scholar 

  208. Klymchenko AS, Demchenko AP (2002) Electrochromic modulation of excited-state intramolecular proton transfer: the new principle in design of fluorescence sensors. J Am Chem Soc 124:12372–12379

    Article  CAS  PubMed  Google Scholar 

  209. Demchenko AP, Mely Y, Duportail G, Klymchenko AS (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96:3461–3470

    Article  CAS  PubMed  Google Scholar 

  210. Formosinho SJ, Arnaut LG (1993) Excited-state proton-transfer reactions. 2. Intramolecular reactions. J Photochem Photobiol A 75:21–48

    Article  CAS  Google Scholar 

  211. Abou-Zied OK (2007) The role of water in solvating the hydrogen-bonding center of 2-(20-hydroxyphenyl)benzoxazole. Chem Phys 337:1–10

    Article  CAS  Google Scholar 

  212. Suwattanamala A, Ruangpornvisuti V (2009) Isomeric structures of benzimidazole, benzoxazole, and benzothiazole derivatives, their electronic properties and transformations. Struct Chem 20:619–631

    Article  CAS  Google Scholar 

  213. Mosquera M, Penedo JC, Rodriguez MCR, RodriguezPrieto F (1996) Photoinduced inter- and intramolecular proton transfer in aqueous and ethanolic solutions of 2-(2′-hydroxyphenyl)benzimidazole: evidence for tautomeric and conformational equilibria in the ground state. J Phys Chem 100:5398–5407

    Article  CAS  Google Scholar 

  214. Strandjord AJG, Barbara PF (1985) Proton-transfer kinetics of 3-hydroxyflavone—solvent effects. J Phys Chem 89:2355–2361

    Article  CAS  Google Scholar 

  215. Yushchenko DA, Shvadchak VV, Bilokin MD, Klymchenko AS, Duportail G, Mely Y, Pivovarenko VG (2006) Modulation of dual fluorescence in a 3-hydroxyquinolone dye by perturbation of its intramolecular proton transfer with solvent polarity and basicity. Photochem Photobiol Sci 5:1038–1044

    Article  CAS  PubMed  Google Scholar 

  216. Chou PT, Huang CH, Pu SC, Cheng YM, Liu YH, Wang Y, Chen CT (2004) Tuning excited-state charge/proton transfer coupled reaction via the dipolar functionality. J Phys Chem A 108:6452–6454

    Article  CAS  Google Scholar 

  217. Chou PT, Martinez ML, Clements JH (1993) Reversal of excitation behavior of proton-transfer vs charge-transfer by dielectric perturbation of electronic manifolds. J Phys Chem 97:2618–2622

    Article  CAS  Google Scholar 

  218. Klymchenko AS, Pivovarenko VG, Ozturk T, Demchenko AP (2003) Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J Chem 27:1336–1343

    Article  CAS  Google Scholar 

  219. Klymchenko AS, Demchenko AP (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys Chem Chem Phys 5:461–468

    Article  CAS  Google Scholar 

  220. Oncul S, Demchenko AP (2006) The effects of thermal quenching on the excited-state intramolecular proton transfer reaction in 3-hydroxyflavones. Spectrochim Acta A Mol Biomol Spectrosc 65:179–183

    Article  PubMed  CAS  Google Scholar 

  221. Tomin VI, Oncul S, Smolarczyk G, Demchenko AP (2007) Dynamic quenching as a simple test for the mechanism of excited-state reaction. Chem Phys 342:126–134

    Article  CAS  Google Scholar 

  222. Vazquez SR, Rodriguez MC, Mosquera M, Rodriguez-Prieto F (2007) Excited-state intramolecular proton transfer in 2-(3′-hydroxy-2′-pyridyl)benzoxazole. Evidence of coupled proton and charge transfer in the excited state of some o-hydroxyarylbenzazoles. J Phys Chem A 111:1814–1826

    Article  CAS  PubMed  Google Scholar 

  223. Rodembusch FS, Leusin FP, Campo LF, Stefani V (2007) Excited state intramolecular proton transfer in amino 2-(20-hydroxyphenyl)benzazole derivatives: effects of the solvent and the amino group position. J Lumin 126:728–734

    Article  CAS  Google Scholar 

  224. Iijima T, Momotake A, Shinohara Y, Sato T, Nishimura Y, Arai T (2010) Excited-state intramolecular proton transfer of naphthalene-fused 2-(2′-hydroxyaryl)benzazole family. J Phys Chem A 114:1603–1609

    Article  CAS  PubMed  Google Scholar 

  225. Wang R, Liu D, Xu K, Li J (2009) Substituent and solvent effects on excited state intramolecular proton transfer in novel 2-(2′-hydroxyphenyl)benzothiazole derivatives. J Photochem Photobiol A: Chem 205:61–69

    Article  CAS  Google Scholar 

  226. Rodembusch FS, Leusin FP, da Costa Medina LF, Brandelli A, Stefani V (2005) Synthesis and spectroscopic characterisation of new ESIPT fluorescent protein probes. Photochem Photobiol Sci 4:254–259

    Article  CAS  PubMed  Google Scholar 

  227. Yang XF, Qi H, Wang L, Su Z, Wang G (2009) A ratiometric fluorescent probe for fluoride ion employing the excited-state intramolecular proton transfer. Talanta 80:92–97

    Article  CAS  PubMed  Google Scholar 

  228. Huang J, Peng AD, Fu HB, Ma Y, Zhai TY, Yao JN (2006) Temperature-dependent ratiometric fluorescence from an organic aggregates system. J Phys Chem A 110:9079–9083

    Article  CAS  PubMed  Google Scholar 

  229. Grando SR, Pessoa CM, Gallas MR, Costa TM, Rodembusch FS, Benvenutti EV (2009) Modulation of the ESIPT emission of benzothiazole type dye incorporated in silica-based hybrid materials. Langmuir 25:13219–13223

    Article  CAS  PubMed  Google Scholar 

  230. Ma QJ, Zhang XB, Zhao XH, Gong YJ, Tang J, Shen GL, Yu RQ (2009) A ratiometric fluorescent sensor for zinc ions based on covalently immobilized derivative of benzoxazole. Spectrochim Acta A 73:687–693

    Article  CAS  Google Scholar 

  231. Lee JK, Lee TS (2005) Newly synthesized polybenzoxazole derivative with an adjacent hydroxyphenyl ring for optical sensing. J Polymer Sci A: Polymer Chem 43:1397–1403

    Article  CAS  Google Scholar 

  232. Kasha M (1986) Proton-transfer spectroscopy—perturbation of the tautomerization potential. J Chem Soc-Faraday Trans II 82:2379–2392

    Article  CAS  Google Scholar 

  233. Barroso M, Chattopadhyay N, Klymchenko AS, Demchenko AP, Arnaut LG, Formosinho SJ (2006) Dramatic pressure-dependent quenching effects in supercritical CO2 assessed by the fluorescence of 4′-dimethylamino-3-hydroxyflavone. Thermodynamic versus kinetics control of excited-state intramolecular proton transfer. J Phys Chem A 110:13419–13424

    Article  CAS  PubMed  Google Scholar 

  234. Szczupak B, Ryder AG, Togashi DM, Rotchev YA, Klymchenko AS, Gorelov A, Glynn TJ (2010) Polarity assessment of thermoresponsive poly(NIPAM-co-NtBA) copolymer films using fluorescence methods. J Fluoresc, in press. doi:10.1007/s10895-010-0613-5

  235. Dennison SM, Guharay J, Sengupta PK (1999) Intramolecular excited-state proton transfer and charge transfer fluorescence of a 3-hydroxyflavone derivative in micellar media. Spectrochim Acta A 55:903–909

    Article  Google Scholar 

  236. Klymchenko AS, Demchenko AP (2002) Probing AOT reverse micelles with two-color fluorescence dyes based on 3-hydroxychromone. Langmuir 18:5637–5639

    Article  CAS  Google Scholar 

  237. Klymchenko AS, Duportail G, Ozturk T, Pivovarenko VG, Mely Y, Demchenko AP (2002) Novel two-band ratiometric fluorescence probes with different location and orientation in phospholipid membranes. Chem Biol 9:1199–1208

    Article  CAS  PubMed  Google Scholar 

  238. Klymchenko AS, Oncul S, Didier P, Schaub E, Bagatolli L, Duportail G, Mely Y (2009) Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone. Biochim Biophys Acta 1788:495–499

    Article  CAS  PubMed  Google Scholar 

  239. Organeroa JA, Tormoa L, Sanza M, Roshal A, Douhal A (2007) Complexation effect of γ-cyclodextrin on a hydroxyflavone derivative: formation of excluded and included anions J. Photochem Photobiol A: Chem 188:74–82

    Article  CAS  Google Scholar 

  240. Ercelen S, Klymchenko AS, Mely Y, Demchenko AP (2005) The binding of novel two-color fluorescence probe FA to serum albumins of different species. Int J Biol Macromol 35:231–242

    Article  CAS  PubMed  Google Scholar 

  241. Roshal AD, Grigorovich AV, Doroshenko AO, Pivovarenko VG, Demchenko AP (1998) Flavonols and crown-flavonols as metal cation chelators. The different nature of Ba2+ and Mg2+ complexes. J Phys Chem A 102:5907–5914

    Article  CAS  Google Scholar 

  242. Demchenko AP (2006) Visualization and sensing of intermolecular interactions with two-color fluorescent probes. FEBS Lett 580:2951–2957

    Article  CAS  PubMed  Google Scholar 

  243. Enander K, Choulier L, Olsson AL, Yushchenko DA, Kanmert D, Klymchenko AS, Demchenko AP, Mely Y, Altschuh D (2008) A peptide-based, ratiometric biosensor construct for direct fluorescence detection of a protein analyte. Bioconjug Chem 19:1864–1870

    Article  CAS  PubMed  Google Scholar 

  244. Boudier C, Klymchenko AS, Mely Y, Follenius-Wund A (2009) Local environment perturbations in alpha1-antitrypsin monitored by a ratiometric fluorescent label. Photochem Photobiol Sci 8:814–821

    Article  CAS  PubMed  Google Scholar 

  245. Avilov SV, Bode C, Tolgyesi FG, Klymchenko AS, Fidy J, Demchenko AP (2005) Temperature effects on alpha-crystallin structure probed by 6-bromomethyl-2-(2-furanyl)-3-hydroxychromone, an environmentally sensitive two-wavelength fluorescent dye covalently attached to the single Cys residue. Int J Biol Macromol 36:290–298

    Article  CAS  PubMed  Google Scholar 

  246. Avilov SV, Bode C, Tolgyesi FG, Klymchenko AS, Fidy J, Demchenko AP (2005) Heat perturbation of bovine eye lens alpha-crystallin probed by covalently attached ratiometric fluorescent dye 4′-diethylamino-3-hydroxyflavone. Biopolymers 78:340–348

    Article  CAS  PubMed  Google Scholar 

  247. Klymchenko AS, Shvadchak VV, Yushchenko DA, Jain N, Mely Y (2008) Excited-state intramolecular proton transfer distinguishes microenvironments in single- and double-stranded DNA. J Phys Chem B 112:12050–12055

    Article  CAS  PubMed  Google Scholar 

  248. Shvadchak VV, Klymchenko AS, de Rocquigny H, Mely Y (2009) Sensing peptide-oligonucleotide interactions by a two-color fluorescence label: application to the HIV-1 nucleocapsid protein. Nucleic Acids Res 37:e25

    Article  PubMed  CAS  Google Scholar 

  249. Spadafora M, Postupalenko VY, Shvadchak VV, Klymchenko AS, Mély Y, Burger A, Benhida R (2009) Efficient synthesis of ratiometric fluorescent nucleosides featuring 3-hydroxychromone nucleobases. Tetrahedron 65:7809–7816

    Article  CAS  Google Scholar 

  250. Demchenko AP, Yesylevskyy SO (2009) Nanoscopic description of biomembrane electrostatics: results of molecular dynamics simulations and fluorescence probing. Chem Phys Lipids 160:63–84

    Article  CAS  PubMed  Google Scholar 

  251. Caarls W, Celej MS, Demchenko AP, Jovin TM (2010) Characterization of coupled ground state and excited state equilibria by fluorescence spectral deconvolution. J Fluoresc 20:181–190

    Google Scholar 

  252. Celej MS, Caarls W, Demchenko AP, Jovin TM (2009) A triple-emission fluorescent probe reveals distinctive amyloid fibrillar polymorphism of wild-type alpha-synuclein and its familial Parkinson’s disease mutants. Biochemistry 48:7465–7472

    Article  CAS  PubMed  Google Scholar 

  253. Klymchenko AS, Duportail G, Demchenko AP, Mely Y (2004) Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys J 86:2929–2941

    Article  CAS  PubMed  Google Scholar 

  254. Oncul S, Klymchenko AS, Kucherak OA, Demchenko AP, Martin S, Dontenwill M, Arntz Y, Didier P, Duportail G, Mely Y (2010) Liquid ordered phase in cell membranes evidenced by a hydration-sensitive probe: effects of cholesterol depletion and apoptosis. Biochim Biophys Acta, in press. doi:10.1016/j.bbamem.2010.01.013

  255. Demchenko AP, Klymchenko AS, Pivovarenko VG, Ercelen S, Duportail G, Mely Y (2003) Multiparametric color-changing fluorescence probes. J Fluoresc 13:291–295

    Article  CAS  Google Scholar 

  256. Lee JS, Kim YK, Vendrell M, Chang YT (2009) Diversity-oriented fluorescence library approach for the discovery of sensors and probes. Mol Biosyst 5:411–421

    Article  CAS  PubMed  Google Scholar 

  257. Aslan K, Lakowicz JR, Szmacinski H, Geddes CD (2005) Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: metal-enhanced fluorescence sensing. J Fluoresc 15:37–40

    Article  CAS  PubMed  Google Scholar 

  258. Yesylevskyy SO, Klymchenko AS, Demchenko AP (2005) Semi-empirical study of two-color fluorescent dyes based on 3-hydroxychromone. J Mol Structure-Theochem 755:229–239

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Demchenko.

Additional information

Dedicated to Professor Michael Kasha on the occasion of his 90-th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demchenko, A.P. The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging. J Fluoresc 20, 1099–1128 (2010). https://doi.org/10.1007/s10895-010-0644-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0644-y

Keywords

Navigation