Skip to main content
Log in

Dual-Fluorescence Probe of Environment Basicity (Hydrogen Bond Accepting Ability) Displaying no Sensitivity to Polarity

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

3-Hydroxyquinolones (3HQs) are a new class of water soluble dual fluorescence probes that can monitor both polarity and basicity (H-bond accepting ability) parameters. Both parameters play an important role in proteins and lipid membranes. Nevertheless, no method exists actually to measure the basicity parameter separately from the polarity. To achieve this aim, we synthesized 2-benzofuryl-3-hydroxy-4(1H)-quinolone (3HQ-Bf) and characterized its photophysical properties by UV, steady-state and time-resolved fluorescence spectroscopy. Due to its extended conjugation and totally planar conformation, 3HQ-Bf is characterized by a high fluorescence quantum yield. In solution, this dye shows an excited state intramolecular proton transfer (ESIPT) reaction resulting in two tautomer bands in the emission spectra. The ESIPT reaction can be considered as irreversible and is governed by rate constants from 0.6 to 8 × 109 s−1, depending on the solvent. The analysis of the spectral properties of 3HQ-Bf in a series of organic solvents revealed a marginal sensitivity to the solvent polarity, but an exquisite sensitivity to solvent basicity, as shown by the linear dependence of the logarithm of the emission bands intensity ratio, log(IN*/IT*), as well as the absorption or emission maxima wavenumbers as a function of the solvent basicity parameter. This probe may find useful applications through coupling to a protein ligand, for characterizing the H-bond acceptor ability at the ligand binding site as well as for studying the basicity changes of lipid membranes during their chemo- and thermotropic conversions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Giuliano KA, Post PL, Hahn KM, Taylor DL (1995) Fluorescent protein biosensors: measurement of molecular dynamics in living cells. Annu. Rev. Biophys. Biomol. Struct. 24:405–434. doi:10.1146/annurev.bb.24.060195.002201

    Article  PubMed  CAS  Google Scholar 

  2. Kasha M (1986) Proton-transfer spectroscopy. Perturbation of the tautomerization potential. J. Chem. Soc., Faraday Trans. II 82:2379–2392. doi:10.1039/f29868202379

    Article  CAS  Google Scholar 

  3. Le Gourrierec D, Ormson SM, Brown RG (1994) Excited-State Intramolecular Proton-Transfer. 2. ESIPT To Oxygen. Prog. React. Kinet. 19:211—275

    Google Scholar 

  4. Formosinho SJ, Arnaut LG (1993) Excited state proton transfer reactions. II. Intramolecular reactions. J. Photochem. Photobiol. Chem. 75:21—48. doi:10.1016/1010-6030(93)80158-6

    Google Scholar 

  5. Klymchenko A, Oztürk T, Pivovarenko V, Demchenko A (2001) Synthesis and spectroscopic properties of benzo- and naphthofuryl-3-hydroxychromones. Can. J. Chem. 79:358–363. doi:10.1139/cjc-79-4-358

    Article  CAS  Google Scholar 

  6. Klymchenko A, Oztürk T, Pivovarenko V, Demchenko A (2001) A 3-hydroxychromone with dramatically improved fluorescence properties. Tetrahedron Lett. 42:7967–7970. doi:10.1016/S0040-4039(01)01723-3

    Article  CAS  Google Scholar 

  7. Klymchenko A, Oztürk T, Demchenko A (2002) Synthesis of furanochromones: a new step in improvement of fluorescence properties. Tetrahedron Lett. 43:7079–7082. doi:10.1016/S0040-4039(02)01547-2

    Article  CAS  Google Scholar 

  8. Klymchenko A, Pivovarenko V, Oztürk T, Demchenko A (2003) Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J. Chem. 27:1336–1343. doi:10.1039/b302965d

    Article  CAS  Google Scholar 

  9. Klymchenko A, Demchenko A (2004) 3-Hydroxychromone dyes exhibiting excited-state intramolecular proton transfer in water with efficient two-band fluorescence. New J. Chem. 28:687–692. doi:10.1039/b316149h

    Article  CAS  Google Scholar 

  10. Klymchenko AS, Pivovarenko VG, Demchenko AP (2003) Perturbation of planarity as the possible mechanism of solvent-dependent variations of fluorescence quantum yield in 2-aryl-3-hydroxychromones. Spectrochim. Acta A Mol. Biomol. Spectrosc. 59:787–792. doi:10.1016/S1386-1425(02)00233-0

    Article  PubMed  CAS  Google Scholar 

  11. Shynkar V, Mély Y, Duportail G, Piemont E, Klymchenko A, Demchenko A (2003) Picosecond time-resolved fluorescence studies are consistent with reversible excited-state intramolecular proton transfer in 4'-(dialkylamino)-3-hydroxyflavones. J. Phys. Chem. A 107:9522–9529. doi:10.1021/jp035855n

    Article  CAS  Google Scholar 

  12. Klymchenko A, Demchenko A (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys. Chem. Chem. Phys. 5:461–468. doi:10.1039/b210352d

    Article  CAS  Google Scholar 

  13. Pivovarenko V, Wroblewska A, Blazejowski J (2005) 2–[4–(Dimethylamino)phenyll-3-hydroxy-4H-chromene-4-one: A H-bond-sensitive fluorescent probe for investigating binary mixtures of organic solvents. Anal. Chim. Acta 545:74–78. doi:10.1016/j.aca.2005.04.042

    Article  CAS  Google Scholar 

  14. Ercelen S, Klymchenko A, Demchenko A (2002) Ultrasensitive fluorescent probe for the hydrophobic range of solvent polarities. Anal. Chim. Acta 464:273–287. doi:10.1016/S0003-2670(02)00493-2

    Article  CAS  Google Scholar 

  15. Nemkovich N, Baumann W, Pivovarenko V (2002) Dipole moments of 4'-aminoflavonols determined using electro-optical absorption measurements or molecular Stark-effect spectroscopy. J. Photochem. Photobiol. Chem. 153:19–24. doi:10.1016/S1010-6030(02)00270-8

    Article  CAS  Google Scholar 

  16. Klymchenko A, Duportail G, Mély Y, Demchenko A (2003) Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proc. Natl. Acad. Sci. USA 100:11219–11224. doi:10.1073/pnas.1934603100

    Article  PubMed  CAS  Google Scholar 

  17. Bondar O, Pivovarenko V, Rowe E (1998) Flavonols - new fluorescent membrane probes for studying the interdigitation of lipid bilayers. Biochim. Biophys. Acta 1369:119–130. doi:10.1016/S0005-2736(97)00218-6

    Article  PubMed  CAS  Google Scholar 

  18. Dennison S, Guharay J, Sengupta P (1999) Excited-state intramolecular proton transfer (ESIPT) and charge transfer (CT) fluorescence probe for model membranes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 55:1127–1132. doi:10.1016/S1386-1425(99)00013-X

    Article  Google Scholar 

  19. Shynkar V, Klymchenko A, Duportail G, Demchenko A, Mély Y (2005) Two-color fluorescent probes for imaging the dipole potential of cell plasma membranes. Biochim. Biophys. Acta 1712:128–136. doi:10.1016/j.bbamem.2005.03.015

    Article  PubMed  CAS  Google Scholar 

  20. Shynkar V, Klymchenko A, Kunzelmann C, Duportail G, Muller CD, Demchenko A, Freyssinet J, Mély Y (2007) Fluorescent biomembrane probe for ratiometric detection of apoptosis. J. Am. Chem. Soc. 129:2187–2193. doi:10.1021/ja068008h

    Article  PubMed  CAS  Google Scholar 

  21. Ercelen S, Klymchenko A, Demchenko A (2003) Novel two-color fluorescence probe with extreme specificity to bovine serum albumin. FEBS Lett. 538:25–28. doi:10.1016/S0014-5793(03)00116-9

    Article  PubMed  CAS  Google Scholar 

  22. Klymchenko A, Avilov S, Demchenko A (2004) Resolution of Cys and Lys labeling of alpha-crystallin with site-sensitive fluorescent 3-hydroxyflavone dye. Anal. Biochem. 329:43–57 . doi:10.1016/j.ab.2004.02.031

    Article  PubMed  CAS  Google Scholar 

  23. Sytnik A, Gormin D, Kasha M (1994) Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence probes. Proc. Natl. Acad. Sci. USA 91:11968–11972. doi:10.1073/pnas.91.25.11968

    Article  PubMed  CAS  Google Scholar 

  24. Roshal A, Grigorovich A, Doroshenko A, Pivovarenko V, Demchenko A (1998) Flavonols and crown-flavonols as metal cation chelators. The different nature of Ba2+ and Mg2+ complexes. J. Phys. Chem. 102:5907–5914

    CAS  Google Scholar 

  25. Poteau X, Saroja G, Spies C, Brown R (2004) The photophysics of some 3-hydroxyflavone derivatives in the presence of protons, alkali metal and alkaline earth cations. J. Photochem. Photobiol., A 162:431–439

    Article  CAS  Google Scholar 

  26. Pivovarenko V, Vadzyuk O, Kosterin S (2006) Fluorometric detection of adenosine triphosphate with 3-hydroxy-4'-(dimethylamino)flavone in aqueous solutions. J. Fluoresc. 16:9–15. doi:10.1007/s10895-005-0020-5

    Article  PubMed  CAS  Google Scholar 

  27. Yushchenko D, Vadzyuk O, Kosterin S, Duportail G, Mély Y, Pivovarenko V (2007) Sensing of adenosine-5'-triphosphate anion in aqueous solutions and mitochondria by a fluorescent 3-hydroxyflavone dye. Anal. Biochem. 369:218–225. doi:10.1016/j.ab.2007.05.005

    Article  PubMed  CAS  Google Scholar 

  28. Yushchenko D, Shvadchak V, Klymchenko A, Duportail G, Mély Y, Pivovarenko V (2006) 2-Aryl-3-hydroxyquinolones, a new class of dyes with solvent dependent dual emission due to excited state intramolecular proton transfer. New J. Chem. 30:774–781. doi:10.1039/b601400c

    Article  CAS  Google Scholar 

  29. Gao F, Johnson KF, Schlenoff JB (1996) Ring closing and photooxidation in nitrogen analogues of 3-hydroxyflavone. J. Chem. Soc., Perkin Trans. 2(2):269–273. doi:10.1039/p29960000269

    Google Scholar 

  30. Yushchenko D, Bilokin’ M, Pyvovarenko O, Duportail G, Mély Y, Pivovarenko V (2006) Synthesis and fluorescence properties of 2-aryl-3-hydroxyquinolones, a new class of dyes displaying dual fluorescence. Tetrahedron Lett. 47:905–908. doi:10.1016/j.tetlet.2005.11.160

    Article  CAS  Google Scholar 

  31. Yushchenko D, Shvadchak V, Klymchenko A, Duportail G, Pivovarenko V, Mély Y (2007) Modulation of excited-state intramolecular proton transfer by viscosity in protic media. J. Phys. Chem. A 111:10435–10438. doi:10.1021/jp074726u

    Article  PubMed  CAS  Google Scholar 

  32. Yushchenko D, Shvadchak V, Bilokin’ M, Klymchenko A, Duportail G, Mély Y, Pivovarenko V (2006) Modulation of dual fluorescence in a 3-hydroxyquinolone dye by perturbation of its intramolecular proton transfer with solvent polarity and basicity. Photochem. Photobiol. Sci. 5:1038–1044. doi:10.1039/b610054f

    Article  PubMed  CAS  Google Scholar 

  33. Reichardt C (1994) Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 94:2319–2358. doi:10.1021/cr00032a005

    Article  CAS  Google Scholar 

  34. Catalán J (1997) On the ET (30), π*, Py, S’., and SPP Empirical Scales as Descriptors of Nonspecific Solvent Effects. J. Org. Chem. 62:8231–8234. doi:10.1021/jo971040x

    Article  PubMed  Google Scholar 

  35. Yushchenko D, Shvadchak V, Klymchenko A, Duportail G, Pivovarenko V, Mély Y (2007) Steric control of the excited-state intramolecular proton transfer in 3-hydroxyquinolones: Steady-state and time-resolved fluorescence study. J. Phys. Chem. A 111:8986–8992

    Article  PubMed  CAS  Google Scholar 

  36. Eastman JW (1967) Quantitative spectrofluorimetry-the fluorescence quantum yield of quinine sulfate. Photochem. Photobiol. 6:55–72. doi:10.1111/j.1751-1097.1967.tb08790.x

    Article  CAS  Google Scholar 

  37. Dewar MJS, Zoebich EG, Healy EF, Stewart JP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107:3902–3909. doi:10.1021/ja00299a024

    CAS  Google Scholar 

  38. Stewart JJP (2007) MOPAC2007. Stewart Computational Chemistry, Colorado Springs, CO, USA. http://OpenMOPAC.net

  39. Livesey AK, Brochon J-C (1987) Analyzing the Distribution of Decay Constants in Pulse-Fluorimetry Using the Maximum Entropy Method. Biophys. J. 52:693–706

    Article  PubMed  CAS  Google Scholar 

  40. Lippert, EL (1975) in J. B. Birks (Ed), Organic Molecular Photophysics, Wiley, New York, 1975, vol. 2, p. 1-95.

  41. Liptay, W (1974) in E. C. Lim (Ed), Excited States. Academic Press, New York, pp. 129-175

  42. Abraham MH (1993) Hydrogen bonding. XXXI: Construction of a scale of solute effective or summation hydrogen-bond basicity. J. Phys. Org. Chem. 6:660–684. doi:10.1002/poc.610061204

    CAS  Google Scholar 

  43. Kamlet MJ, Dickinson C, Taft RW (1981) Linear solvation energy relationships Solvent effects on some fluorescence probes. Chem. Phys. Lett. 77:69–72. doi:10.1016/0009-2614(81)85602-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the ECO-NET and ARCUS programs from the French Ministère des Affaires Etrangères. DAY and VVS are recipients of a high-level Eiffel Fellowship. VGP was supported by a fellowship from University Louis Pasteur. We are also thankful to Andrey Klymchenko for useful discussion and to Etienne Piémont for help with time-resolved measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasyl G. Pivovarenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilokin’, M.D., Shvadchak, V.V., Yushchenko, D.A. et al. Dual-Fluorescence Probe of Environment Basicity (Hydrogen Bond Accepting Ability) Displaying no Sensitivity to Polarity. J Fluoresc 19, 545–553 (2009). https://doi.org/10.1007/s10895-008-0443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0443-x

Keywords

Navigation