Skip to main content
Log in

Probing DNA Hybridization in Homogeneous Solution and at Interfaces via Measurement of the Intrinsic Fluorescence Decay Time of a Single Label

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The hybridization of DNA oligomers including molecular beacons can be detected by measurement of either the decay time or the intensity of a single fluorescent label attached to the end of the respective oligonucleotide. The method works both in solution and solid phase and can distinguish between fully complementary and mismatch sequences as demonstrated for a 15-mer oligonucleotide and a 25-mer molecular beacon. The fluorescence lifetime method is advantageous in (a) requiring a single label (and therefore a single labeling step) only; and (b), being based on measurement of a self-referenced magnitude that is hardly affected by parameters such as fluctuations in light intensity that make measurement of intensity more prone to interferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Knemeyer JP, Marmé N, Sauer M (2000) Probes for Detection of Specific DNA Sequences at the Single-Molecule Level. Anal Chem 72:3717–3724

    Article  PubMed  CAS  Google Scholar 

  2. Rye HS, Dabora JM, Quesada MA, Mathies RA (1993) Fluorometric assay using dimeric dyes for double- and single-stranded DNA and RNA with picogram sensitivity. Anal Biochem 208:144–150

    Article  PubMed  CAS  Google Scholar 

  3. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  4. Goodchild J (1990) Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconjug Chem 1:165–187

    Article  PubMed  CAS  Google Scholar 

  5. Nagl S, Schaeferling M, Wolfbeis OS (2005) Fluorescence Analysis in Microarray Technology. Microchim Acta 151:1–21

    Article  CAS  Google Scholar 

  6. Wolfbeis OS, Boehmer M, Duerkop A, Enderlein J, Gruber M, Klimant I, Krause C, Kuerner J, Liebsch G, Lin Z, Oswald B, Wu M (2002) In: R Kraayenhof (ed.) Springer Series in Fluorescence, vol. 2. Springer, Berlin, Heidelberg

  7. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum, New York

    Google Scholar 

  8. Valeur B (2002) Molecular Fluorescence: Principles and Applications Wiley-VCH Weinheim

  9. Jeltsch A, Fritz A, Alves J, Wolfes H, Pingoud A (1993) A fast and accurate enzyme-linked immunosorbent assay for the determination of the DNA cleavage activity of restriction endonuclease. Anal Biochem 213:234–240

    Article  PubMed  CAS  Google Scholar 

  10. Lee SP, Porter D, Chirikjian JG, Knutson JR, Han MK (1994) A fluorometric Assay for DNA Cleavage Reactions characterized with BamHJ Restriction Endonuclease. Anal Biochem 220:377–383

    Article  PubMed  CAS  Google Scholar 

  11. Skorobogatyi MV, Malakhov AD, Pchelintseva AA, Turban AA, Bondarev SL, Koreshun VA (2006) Fluorescent 5-alkynyl-2'-deoxyuridines: high emission efficiency of a conjugated perylene nucleoside in a DNA duplex. ChemBioChem 2:810–816

    Article  CAS  Google Scholar 

  12. Mihindukulasuriya SH, Morcone TK, McGown LB (2003) Characterization of acridone dyes for use in four-decay detection in DNA sequencing. Electrophoresis 24:20–25

    Article  PubMed  CAS  Google Scholar 

  13. Lassiter SJ, Stryjewski W, Owens CV, Flanagan JH, Hammer RP, Khan S, Soper SA (2002) Optimization of sequencing conditions using near-infrared lifetime identification methods in capillary gel electrophoresis. Electrophoresis 23:1480–1489

    Article  PubMed  CAS  Google Scholar 

  14. McIntosh SL, Deligeorgiev TG, Gadjev NI, McGown LB (2002) Mono- and bis-intercalating dyes for multiplex fluorescence lifetime detection of DNA restriction fragments in capillary electrophoresis. Electrophoresis 23:1473–1479

    Article  PubMed  CAS  Google Scholar 

  15. Waddell E, Wang Y, Stryjewski W, McWhorter S, Henry AC, Evans D, McCarley RL, Soper SA (2000) High-Resolution Near-Infrared Imaging of DNA Microarrays with Time-Resolved Acquisition of Fluorescence Lifetimes. Anal Chem 72:5907–5917

    Article  PubMed  CAS  Google Scholar 

  16. Ying L, Wallace MI, Balasubramanian S, Klenerman D (2000) FRET Fluctuation Spectroscopy: Exploring the Conformational Dynamics of a DNA Hairpin Loop. J Phys Chem B104:5171–5178

    Google Scholar 

  17. Vamosi G, Gohike C, Clegg RM (1996) Fluorescence characteristics of 5-carboxytetramethylrhodamine linked covalently to the 5' end of oligonucleotides: multiple conformers of single-stranded and double-stranded dye-DNA complexes. Biophys J 71:972–994

    Article  PubMed  CAS  Google Scholar 

  18. Malicka J, Gryczynski I, Maliwal BP, Fang J, Lakowicz JR (2003) Fluorescence spectral properties of cyanine dye labeled DNA near metallic silver particles. Biopolymers 72:96–104

    Article  PubMed  CAS  Google Scholar 

  19. Jennings TL, Singh MP, Strouse GF (2006) Fluorescent Lifetime Quenching near d=1.5 nm Gold Nanoparticles: Probing NSET Validity. J Am Chem Soc 128:5462–5467

    Article  PubMed  CAS  Google Scholar 

  20. Murata S, Herman P, Lin H, Lakowicz J (2001) Texture analysis of fluorescence lifetime images of AT- and GC-rich regions in nuclei. J Histochem Cytochem 49:1443–1452

    PubMed  CAS  Google Scholar 

  21. He H, Nunnally BK, Li L, McGown LB (1998) On-the-fly fluorescence lifetime detection of dye-labeled DNA primers for multiplex analysis. Anal Chem 41:178–185

    Google Scholar 

  22. Jaeger S, Brand L, Eggeling C (2003) New Fluorescence Techniques for High-Throughput Drug Discovery. Curr Pharm Biotechnol 4:463–476

    Article  CAS  Google Scholar 

  23. Eggeling C, Brand L, Ullmann D, Jaeger S (2003) Drug Discovery Today (DDT). Drug Discov Today (DDT) 8:632–641

    Article  CAS  Google Scholar 

  24. French TE, Bailey B, Stumbo DP, Modlin DN (1999) Time-resolved fluorometer for high-throughput screening. Proc Soc Photo-opt Instrum Eng (SPIE) 3603:272–280

    CAS  Google Scholar 

  25. Turconi S, Bingham RP, Haupts U, Pope AJ (2001) Developments in fluorescence lifetime-based analysis for ultra-HTS. Drug Discov Today (DDT) 6:S27–S39

    Article  CAS  Google Scholar 

  26. Wetzl BK, Pfeifer L, Wolfbeis OS (2005) Screening Scheme Based on Measurement of Fluorescence Lifetime in the Nanosecond Domain. J Biomol Screen 10:685–694

    Google Scholar 

  27. Crockett AO, Wittwer CT (2001) Fluorescein-Labeled Oligonucleotides for Real-Time PCR: Using the Inherent Quenching of Deoxyguanosine Nucleotides. Anal Biochem 290:89–97

    Article  PubMed  CAS  Google Scholar 

  28. Hennig A, Roth D, Enderle T, Nau WM (2006) Nanosecond time-resolved fluorescence protease assays. ChemBiochem 7:733–737

    Article  PubMed  CAS  Google Scholar 

  29. O’Shea DJ, O’Sullivan PJ, Ponomarev GV, Papkovsky DB (2005) Post-PCR detection of nucleic acids using metalloporphyrin labels and time-resolved fluorescence. Anal Chim Acta 537:111–117

    Article  CAS  Google Scholar 

  30. Wetzl BK, Yarmoluk SM, Craig DB, Wolfbeis OS (2004) Chameleon labels for staining and quantifying of proteins. Angew Chem Int Ed 43:5400–5402

    Article  CAS  Google Scholar 

  31. Katritzky AR (1980) Conversions of primary amino groups into other functionality mediated by pyrylium cations. Tetrahedron 36:679–699

    Article  CAS  Google Scholar 

  32. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridisation. Nat Biotechnol 14:303–308

    Article  PubMed  CAS  Google Scholar 

  33. Liu X, Farmerie W, Schuster S, Tan W (2000) Molecular beacons for DNA biosensors with micrometer to submicrometer dimensions. Anal Biochem 283:56–63

    Article  PubMed  CAS  Google Scholar 

  34. Kourentzi KD, Fox GE, Willson RC (2003) Hybridization-responsive fluorescent DNA probes containing the adenine analog 2-aminopurine. Anal Biochem 322:124–126

    Article  PubMed  CAS  Google Scholar 

  35. Marras SAE, Kramer FR, Tyagi S (2002) Efficiency of Fluorescence resonance energy transfer and contact-mediate quenching in oligonucleotide probes. Nucleic Acid Res 30:e122

    Article  PubMed  Google Scholar 

  36. Kim J, Doose S, Neuweiler H, Sauer M (2006) The initial step of DNA hairpin folding: a kinetic analysis using fluorescence correlation spectroscopy. Nucleic Acid Res 34:2516–2527

    Article  PubMed  CAS  Google Scholar 

  37. Lewis FD, Wu T, Zhang Y, Letsinger RL, Greenfield SR, Wasielewski MR (1997) Distance-dependent electron transfer in DNA hairpins. Science 277:673–676

    Article  PubMed  CAS  Google Scholar 

  38. Demas JN, Crosby GA (1971) The Measurement of Photoluminescence Quantum Yield. J Phys Chem 75:991–1024

    Article  Google Scholar 

Download references

Acknowledgment

We thank IOM (Innovative Optische Messtechnik GmbH), Berlin, for providing the LF40 lifetime reader and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto S. Wolfbeis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoefelschweiger, B.K., Wolfbeis, O.S. Probing DNA Hybridization in Homogeneous Solution and at Interfaces via Measurement of the Intrinsic Fluorescence Decay Time of a Single Label. J Fluoresc 18, 413–421 (2008). https://doi.org/10.1007/s10895-007-0281-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0281-2

Keywords

Navigation