Skip to main content

Advertisement

Log in

Enhancement of Intracellular Delivery of CdTe Quantum Dots (QDs) to Living Cells by Tat Conjugation

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Quantum dots (QDs), as novel fluorescence probes, have shown a great potential for bio-molecular labeling and cellular imaging. To stain cellular targets, the sufficient intracellular delivery of QDs is required. In this work the tat, a typical membrane-permeable carrier peptide, was conjugated with thiol-capped CdTe QDs to form CdTe Tat-QDs, and the intracellular deliveries of CdTe QDs or CdTe Tat-QDs were compared in human hepatocellular carcinoma (QGY) cells and human breast cancer (MCF7) cells in vitro by means of confocal laser scanning microscopy. Added into the cell dishes, both QDs and Tat-QDs adhered to the outer leaflet of the plasma membrane of cells within a few minutes, but the binding amount of Tat-QDs was obviously higher than that of QDs. Then both QDs and Tat-QDs can penetrate into cells, and their cellular contents increased with incubation time but both saturated after 3 hours incubation. However the cellular levels of Tat-QDs were higher than those of QDs, with the ratio of 2.1 (±0.3) times in QGY cells and 1.5 (±0.2) times in MCF7 cells, demonstrating the enhancing effect of Tat conjugation on the intracellular delivery of QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell Imaging. Science 300:82–86

    Article  PubMed  CAS  Google Scholar 

  2. Weijer CJ (2003) Visualizing signals moving in cells. Science 300:96–100

    Article  PubMed  CAS  Google Scholar 

  3. Miyawaki A, Sawano A, Kogure T (2003) Lighting up cells: labeling proteins with fluorophores. Nat Cell Biol 5:S1–7

    Article  Google Scholar 

  4. Wu H, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Article  PubMed  CAS  Google Scholar 

  5. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  PubMed  CAS  Google Scholar 

  6. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  PubMed  CAS  Google Scholar 

  7. Klarreich E (2001) Biologists join the dots. Nature 413:450–452

    Article  PubMed  CAS  Google Scholar 

  8. Liu T, Liu B, Zhang H, Wang Y (2005) The fluorescence bioassay platforms on quantum dots nanoparticles. J Fluorescence 15(5):729–733

    Article  CAS  Google Scholar 

  9. Parak WJ, Pellegrino T, Plank C (2005) Labeling of cells with quantum dots. Nanotechnology 16:R9–R25

    Article  CAS  Google Scholar 

  10. Larson DR, Zipfel WR, Welliams RM, Clark ST, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence image in vivo. Science 300:1434–1436

    Article  PubMed  CAS  Google Scholar 

  11. Zahavy E, Freeman E, Lustig S, Keysary A, Yitzhaki S (2005) Double labeling and simultaneous detection of B- and T cells using fluorescent nano-crystal (q-dots) in paraffin-embedded tissues. J Fluorescence 15(5):661–665

    Article  CAS  Google Scholar 

  12. Zhang P (2006) Investigation of novel quantum dots/proteins/ cellulose bioconjugateusing NSOM and fluorescence. J Fluorescence 16(3):349–353

    Article  CAS  Google Scholar 

  13. Minet O, Dressler C, Beuthan J (2004) Heat stress induced redistribution of fluorescent quantum dots in breast tumor cells. J Fluorescence 14(3):241–247

    Article  CAS  Google Scholar 

  14. Zhang H, Wang L, Xiong H, Hu L, Yang B, Li W (2003) Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv Mater 15:1712–1712

    Article  CAS  Google Scholar 

  15. Smith AM, Gao X, Nie S (2004) Quantum dot nanocrystals for in vitro molecular and cellular imaging. Photochem Photobiol 80:377–385

    PubMed  CAS  Google Scholar 

  16. Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem Biophys Res Commun 314:46–53

    Article  PubMed  CAS  Google Scholar 

  17. Ma J, Chen JY, Guo J, Wang CC, Yang WL, Xu L, Wang PN (2006) Photostability of thiol-capped CdTe quantum dots in living cells: the effect of photo-oxidation. Nanotechnology 17:2083–2089

    Article  CAS  Google Scholar 

  18. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials 4:435–446

    Article  PubMed  CAS  Google Scholar 

  19. Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V, Klinov D, Pluot M, Cohen JHM, Nabiev I (2004) Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem 324:60–67

    Article  PubMed  CAS  Google Scholar 

  20. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides—An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Article  PubMed  CAS  Google Scholar 

  21. Vives E (2003) Cellular uptake of TAT peptide: an endocytosis mechanism following ionic interactions. J Mol Recognit 16:265–271

    Article  PubMed  CAS  Google Scholar 

  22. Guo J, Yang W, Wang C (2005) Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions. J Phys Chem B 109:17467–17473

    Article  CAS  Google Scholar 

  23. Bullen C, Mulvaney P (2006) The effects of chemisorption on the luminescence of CdSe quantum dots. Langmuir 22:3007–3013

    Article  PubMed  CAS  Google Scholar 

  24. Futaki S (2005) Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv Drug Deliv Rev 57:547–558

    Article  PubMed  CAS  Google Scholar 

  25. Ziegler A, Nervi P, Durrenberger M, Seelig J (2005) The cationic cell-penetrating peptide Cpp(TAT) derived from HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochem 44:138–148

    Article  CAS  Google Scholar 

  26. Takeuchi T, Kosuge M, Tadokoro A, Sugiura Y, Nishi M, Kawata M, Sakai N, Matile S, Futaki S (2006) Direct and rapid cytosolic delivery using cell-penetrating peptides mediated by pyrenebutyrate. ACS Chem Biol 1:299–303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Shanghai Municipal Science and Technology Commission (06ZR14005 and 04DZ05617) and the National Natural Science Foundation of China (60578045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, F.L., Chen, J.Y., Guo, J. et al. Enhancement of Intracellular Delivery of CdTe Quantum Dots (QDs) to Living Cells by Tat Conjugation. J Fluoresc 17, 149–154 (2007). https://doi.org/10.1007/s10895-006-0152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0152-2

Keywords

Navigation