Skip to main content
Log in

Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF): Application to Ultra Fast and Sensitive Clinical Assays

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

In this rapid communication we describe an exciting platform technology that promises to fundamentally address two underlying constraints of modern assays and immunoassays, namely sensitivity and rapidity. By combining the use of Metal-enhanced Fluorescence (MEF) with low power microwave heating (Mw), we can significantly increase the sensitivity of surface assays as well as >95% kinetically complete the assay within a few seconds. This technology is subsequently likely to find significant importance in certain clinical assays, such as in the clinical assessment of myoglobin, where both the assay rapidity and sensitivity are paramount for the assessment and treatment of acute myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

AFM, Atomic Force Microscopy; BSA, Bovine Serum Albumin; MAMEF, Microwave-Accelerated Metal-Enhanced Fluorescence; MEF, Metal-Enhanced Fluorescence; Mw:

Low-Power Microwave exposure; RDE, Radiative Decay Engineering; SiFs: Silver Island Films.

REFERENCES

  1. A. Bange, H. B. Halsall, and W. R. Heineman (2005). Microfluidic immunosensor systems. Biosens. Bioelectron. 20(12), 2488–2503.

    Article  PubMed  CAS  Google Scholar 

  2. L. A. Hemmilam (1992). Applications of Fluorescence in Immunoassays, Wiley, New York.

  3. K. Van Dyke and R. Van Dyke (Eds.) (1990). Luminescence Immunoassay and Molecular Applications, CRC Press, Boca Raton, FL.

  4. A. J. Ozinkas (1994). In J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Vol. 4, Plenum, New York.

  5. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes (2005). Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr. Opin. Biotechnol. 16(1), 55–62.

    Article  PubMed  CAS  Google Scholar 

  6. C. D. Geddes, K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, and J. R. Lakowicz (2005). In C. D. Geddes and J. R. Lakowicz (Eds.), Topics in Fluorescence in Fluorescence Spectroscopy, Kluwer, New York, pp. 401–448.

  7. J. R. Lakowicz (2001). Radiative decay engineering: Biophysical and biomedical applications. Anal. Biochem. 298, 1–24.

    Article  PubMed  CAS  Google Scholar 

  8. C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Fang, and J. R. Lakowicz (2003). Metal-enhanced fluorescence due to silver colloids on a planar surface: Potential applications of Indocyanine green to in vivo imaging. J. Phys. Chem. A. 107, 3443–3449.

    Article  CAS  Google Scholar 

  9. J. Malicka, I. Gryczynski, C. Geddes, and J. R. Lakowicz (2003). Metal-enhanced emission from indocyanine green: A new approach to in vivo imaging. J. Biomed. Opt. 8, 472–478.

    Article  PubMed  CAS  Google Scholar 

  10. K. Aslan, J. R. Lakowicz, and C. D. Geddes (2005). Rapid deposition of triangular silver nanoplates on planar surfaces: Application to metal-enhanced fluorescence. J. Phys. Chem. B. 109, 6247–6251.

    Article  PubMed  CAS  Google Scholar 

  11. K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes (2005). Fast and slow deposition of silver nanorods on planar surfaces: Application to metal-enhanced fluorescence. J. Phys. Chem. B. 109(8), 3157–3162.

    Article  CAS  Google Scholar 

  12. A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz (2003). Enhanced fluorescence from fluorophores on fractal silver surfaces. J. Phys. Chem. B. 107, 8829–8833.

    Article  CAS  Google Scholar 

  13. C. D. Geddes, A. Parfenov, and J. R. Lakowicz (2003). Photodeposition of silver can result in metal-enhanced fluorescence. Appl. Spectrosc. 57, 526–531.

    Article  PubMed  CAS  Google Scholar 

  14. C. D. Geddes, A. Parfenov, D. Roll, J. Fang, and J. R. Lakowicz (2003). Electrochemical and laser deposition of silver for use in metal enhanced fluorescence. Langmuir 19, 6236–6241.

    Article  CAS  Google Scholar 

  15. K. Aslan, R. Badugu, J. R. Lakowicz, and C. D. Geddes (2005). Metal-enhanced fluorescence from plastic substrates. J. Fluoresc. 15(2), 99–104.

    Article  PubMed  CAS  Google Scholar 

  16. C. D. Geddes and J. R. Lakowicz (2002). Metal-enhanced fluorescence. J. Fluoresc. 12(2), 121–129.

    Article  Google Scholar 

  17. J. Malicka, I. Gryczynski, and J. R. Lakowicz (2003). DNA hybridization assays using metal-enhanced fluorescence. Biochem. Biophys. Res. Commun. 306, 213–218.

    Article  PubMed  CAS  Google Scholar 

  18. J. R. Lakowicz, J. Malicka, S. D’Auria, and I. Gryczynski (2003). Release of the self-quenching of fluorescence near silver metallic surfaces. Anal. Biochem. 320, 13–20.

    Article  PubMed  CAS  Google Scholar 

  19. K. Aslan, J. R. Lakowicz, H. Szmacinski, and C. D. Geddes. (2005). Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: Metal-enhanced fluorescence sensing. J. Fluoresc. 15(1), 37–40.

    Article  CAS  Google Scholar 

  20. K. Aslan, and C. D. Geddes. (in press). Microwave-accelerated metal-enhanced fluorescence (MAMEF): A new platform technology for ultra fast and ultra bright assays. Anal. Chem..

  21. A. G. Whittaker and D. M. P. Mingos (1993). Microwave-assisted solid-state reactions involving metal powders and gases. J. Chem. Soc. Dalton Trans. 16, 2541–2543.

    Article  Google Scholar 

  22. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, Kluwer, New York.

  23. E. Matveeva, Z. Gryczynski, and J. R. Lakowicz (2005). Myoglobin immunoassay based on metal particle-enhanced fluorescence. J. Immunol. Methods 302, 26–35.

    Article  PubMed  CAS  Google Scholar 

  24. K. D. Micheva, R. W. Holz, and S. J. Smith (2001). Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity. J. Cell Biol. 154, 355–368.

    Article  PubMed  CAS  Google Scholar 

  25. R. K. Kan, C. M. Pleva, T. A. Hamilton, and J. P. Petrali (2005). Immunolocalization of MAP-2 in routinely formalin-fixed, paraffin-embedded guinea pig brain sections using microwave irradiation: A comparison of different combinations of antibody clones and antigen retrieval buffer solutions. Microsc. Microanal. 11(2):175–80.

    Article  PubMed  CAS  Google Scholar 

  26. S. Link and M. A. El-Sayed (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426.

    Article  CAS  Google Scholar 

  27. U. Kreibig and L. Genzel (1985). Surf. Sci. 156, 678–700.

    Article  CAS  Google Scholar 

  28. M. Panteghini, F. S. Apple, R. H. Christenson, F. Dati, J. Mair, and A. H. Wu (1999). Use of biochemical markers in acute coronary syndromes. Clin. Chem. Lab. Med. 37, 687–693.

    Article  PubMed  CAS  Google Scholar 

  29. J. Woo, F. L. Lacbawan, R. Sunheimer, D. LeFever, and J. B. McCabe (1995). Is myoglobin useful in the diagnosis of acute myocardial-infarction in the emergency department setting? Am. J. Clin. Pathol. 103, 725–729.

    PubMed  CAS  Google Scholar 

  30. J. F. Tucker, R. A. Collins, A. J. Anderson, M. Hess, I. M. Farley, D. A. Hagemann, H. J. Harkins, and D. Zwicke (1994). Value of serial myoglobin levels in the early diagnosis of patients admitted for acute myocardial-infarction. Ann. Emergency Med. 24, 704–708.

    Article  CAS  Google Scholar 

  31. C. Montague and T. Kircher (1995). Myoglobin in the early evaluation of acute chest pain. Am. J. Clin. Pathol. 104, 472–476

    PubMed  CAS  Google Scholar 

  32. W. S. Kilpatrick, D. Wosornu, J. B. McGuinness, and A. C. Glen (1993). Early diagnosis of acute myocardial-infarction-Ck-Mb and myoglobin compared. Ann. Clin. Biochem. 30, 435–438.

    PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the NIH GM070929 and the National Center for Research Resources, RR008119. Partial salary support to CDG from UMBI/MBC is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Geddes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslan, K., Geddes, C.D. Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF): Application to Ultra Fast and Sensitive Clinical Assays. J Fluoresc 16, 3–8 (2006). https://doi.org/10.1007/s10895-005-0026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0026-z

KEY WORDS:

Navigation