Skip to main content
Log in

Phytohormone Regulation of Legume-Rhizobia Interactions

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed ’autoregulation of nodulation’. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone–related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig.2

Similar content being viewed by others

References

  • Alunni B, Kevei Z, Redondo-Nieto M, Kondorosi A, Mergaert P, Kondorosi E (2007) Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Mol Plant Microbe Interact 20:1138–1148

  • Ballhorn DJ, Kautz S, Schadler M (2013) Induced plant defense via volatile production is dependent on rhizobial symbiosis. Oecologia 172:833–846

    PubMed  Google Scholar 

  • Bano A, Balool R, Dazzo F (2010) Adaptation of chickpea to desiccation stress is enhanced by symbiotic rhizobia. Symbiosis 50:129–133

    CAS  Google Scholar 

  • Baudouin E, Pieuchot L, Engler G, Pauly N, Puppo A (2006) Nitric oxide is formed in Medicago truncatulaSinorhizobium meliloti functional nodules. Mol Plant Microbe Interact 19:970–975

    CAS  PubMed  Google Scholar 

  • Bedinger PA, Pearce G, Covey PA (2010) RALFs: peptide regulators of plant growth. Plant Signal Behav 5:1342–1346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    PubMed  Google Scholar 

  • Biswas B, Chan PK, Gresshoff PM (2009) A novel ABA insensitive mutant of Lotus japonicus with a wilty phenotype displays unaltered nodulation regulation. Mol Plant 2:487–499

    CAS  PubMed  Google Scholar 

  • Blilou I, Ocampo JA, García-Garrido JM (1999) Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid. J Exp Bot 50:1663–1668

    CAS  Google Scholar 

  • Boiero L, Perrig D, MAsciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    CAS  PubMed  Google Scholar 

  • Boot KJM, van Brussel AAN, Tak T, Spaink HP, Kijne JW (1999) Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp nigra roots. Mol Plant-Microbe Interact 12:839–844

    CAS  Google Scholar 

  • Boscari A, Meilhoc E, Castella C, Bruand C, Puppo A, Brouquisse R (2013) Which role for nitric oxide in symbiotic N2-fixing nodules: toxic by-product or useful signaling/metabolic intermediate? Front Plant Sci 4:1–6

    Google Scholar 

  • Brigido C, Nascimento FX, Duan J, Glick BR, Oliveira S (2013) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea. FEMS Microbiol Lett 349:46–53

    CAS  PubMed  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bustos-Sanmamed P, Mao G, Deng Y, Elouet M, Kahn GA, Bazin J, Turner M, Subramanian S, Yu O, Crespi M, Lelande-Brière C (2013) Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. Funct Plant Biol 40:1208–1220

    CAS  Google Scholar 

  • Campalans A, Kondorosi A, Crespi M (2004) Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell 16:1047–1059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan PK, Biswas B, Gresshoff PM (2013) Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected ‘hypernodulation’ response in Lotus japonicus. J Integr Plant Biol 55:395–408

    CAS  PubMed  Google Scholar 

  • Charon C, Johansson C, Kondorosi E, Kondorosi A, Crespi M (1997) Enod40 induces dedifferentiation and division of root cortical cells in legumes. Proc Natl Acad Sci U S A 94:8901–8906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charon C, Sousa C, Crespi M, Kondorosi A (1999) Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant Cell 11:1953–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Combier JP, Küster H, Journet EP, Hohnjec N, Gamas P, Niebel A (2008) Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. Mol Plant Microbe Interact 21:1118–1127

    CAS  PubMed  Google Scholar 

  • Confonte VP, Echeverria M, Sánchez C, Ugalde RA, Menéndez AB, Lepek VC (2010) Engineered ACC deaminase-expressing free-living cells of Mesorhizobium loti show increased nodulation efficiency and competitiveness on Lotus spp. J Gen Appl Microbiol 56:331–338

    Google Scholar 

  • Cooper JB, Long SR (1994) Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell 6:215–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crespi MD, Jurkevitch E, Poiret M, Daubentoncarafa Y, Petrovics G, Kondorosi E, Kondorosi A (1994) Enod40, a gene expressed during nodule organogenesis, codes for a nontranslatable RNA involved in plant growth. EMBO J 13:5099–5112

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Billy F, Grosjean C, May S, Bennett M, Cullimore JV (2001) Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol Plant-Microbe Interact 14:267–277

    PubMed  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux J-P, van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18:923–937

    PubMed  Google Scholar 

  • Deinum EE, Geurts R, Bisseling T, Mulder BM (2012) Modeling a cortical auxin aximum for nodulation: different signaures of potential strategies. Front Plant Sci 3:1–19

    Google Scholar 

  • del Guidice J, Cam Y, Damiani I, Fung-Chat F, Meilhoc E, Bruand C, Brouquisse R, Puppo A, Boscari A (2011) Nitric oxide is required for an optimal establishment of the Medicago truncatula–Sinorhizobium meliloti symbiosis. New Phytol 191:405–417

    Google Scholar 

  • Delay C, Imin N, Djordjevic MA (2013) CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. J Exp Bot 64:5383–5394

    CAS  PubMed  Google Scholar 

  • Desbrosses GJ, Stougaard J (2011) Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe 10:348–358

    CAS  PubMed  Google Scholar 

  • Ding Y, Oldroyd GED (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4:89–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GED (2008) Abscisic acid coordinates Nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20:2681–2695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Hirsch AM (1998) Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol 116:53–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Favery B, Complainville A, Vinardell JM, Lecomte P, Vaubert D, Mergaert P, Kondorosi A, Kondorosi E, Crespi M, Abad P (2002) The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula. Mol Plant-Microbe Interact 15:1008–1013

    CAS  PubMed  Google Scholar 

  • Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130:519–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Regul 22:47–72

    CAS  Google Scholar 

  • Ferguson BJ, Reid JB, Ross JJ (2005) Nodulation phenotypes of gibberellin and brassinosteroid mutants of Pisum sativum. Plant Physiol 138:2396–2405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin M-H, Lin Y-H, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    CAS  PubMed  Google Scholar 

  • Ferguson BJ, Foo E, Reid JB, Ross JJ (2011) Relationship between gibberellin, ethylene and nodulation in Pisum sativum. New Phytol 189:829–842

    CAS  PubMed  Google Scholar 

  • Ferguson BJ, Lin MH, Gresshoff PM (2013) Regulation of legume nodulation by acidic growth conditions. Plant Signal Behav 8:e23426

    PubMed  PubMed Central  Google Scholar 

  • Ferguson BJ, Li D, Hastwell AH, Reid DE, Li Y, Jackson S, Gresshoff PM (2014) The soybean (Glycine max) nodulation-suppressive CLE peptide, GmRIC1, functions interpsecifically in common white bean (Phaseolus vulgaris), but not in a supernodulating line mutated in PvNARK. Plant Biotechnol J. doi:10.1111/pbi.12216

  • Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081

    CAS  PubMed  Google Scholar 

  • Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6:76–87

    CAS  PubMed  Google Scholar 

  • Foo E, Ferguson BJ, Reid JB (2014) The potential roles of strigolactones and brassinosteroids in the autoregulation of nodulation pathway. Ann Bot

  • Gallego-Giraldo L, Bhattarai K, Pislariu C, Nakashima J, Jikumaru Y, Kamiya Y, Udvardi M, Monteros M, Dixon R (2014) Lignin modification leads to increase nodule numbers in alfalfa (Medicago sativa L.). Plant Physiol 164:1139–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  • García-Garrido JM, León-Morcillo RJ, Martín-Rodríguez JA, Ocampo-Bote JA (2010) Variations in the mycorrhization characteristics in roots of wild-type and ABA-deficient tomato are accompanied by specific transcriptomic alterations. Mol Plant-Microbe Interact 23:651–664

    Google Scholar 

  • Giraud E, Moulin L, Vellenet D etal (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

  • Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gresshoff PM, Lohar D, Chan PK, Biswas B, Jiang Q, Reid D, Ferguson BJ, Stacey G (2009) Genetic analysis of ethylene regulation of legume nodulation. Plant Signal Behav 4:818–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Microbiol 80:695–720

    CAS  Google Scholar 

  • Haag AF, Baloban M, Sani M, Kerscher B, Pierre O, Farkas A, Longhi R, Boncompagni E, Hérouart D, Dall’Angelo S, Kondorosi E, Zanda M, Mergaert P, Ferguson GP (2011) Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. PLoS Biol 9:e1001169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haag AF, Kerscher B, Dall’Angelo S, Sani M, Longhi R, Baloban M, Wilson HM, Mergaert P, Zanda M, Ferguson GP (2012) Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide. J Biol Chem 287:10791–10798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi S, Reid DE, Lorenc M, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ (2012) Transient Nod factor-dependent gene expression in the nodulation competent zone of soybean (Glycine max [L.] Merr.) roots. Plant Biotechnol J 8:995–1010

    Google Scholar 

  • Hayashi S, Gresshoff PM, Ferguson BJ (2014) Mechanistic action of gibberellins in legume nodulation. J Integr Plant Biol

  • Hayat S, Ahmad A (2003) Soaking seeds of Lens culinaris with 28‐homobrassinolide increased nitrate reductase activity and grain yield in the field in India. Ann Appl Biol 143:121–124

    CAS  Google Scholar 

  • Heckmann ABB, Sandal N, Bek AS, Madsen LH, Jurkiewicz A, Nielsen MW, Tirichine L, Stougaard J (2011) Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol Plant Microbe Interact 24:1385–1395

    CAS  PubMed  Google Scholar 

  • Heidstra R, Yang WC, Yalcin Y, Peck S, Emons A, van Kammen A, Bisseling T (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124:1781–1787

    CAS  PubMed  Google Scholar 

  • Held M, Hou H, Miri M, Huynh C, Ross L, Hossain MS, Sato S, Tabata S, Perry J, Wang TL (2014) Szczyglowski K (2014) Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. Plant Cell. doi:10.1105/tpc.113.119362

    PubMed  PubMed Central  Google Scholar 

  • Hershey DM, Lu X, Zi J, Peters RJ (2014) Functional conservation of the capacity for ent-kaurene biosynthesis and an associated operon in certain rhizobia. J Bacteriol 196:100–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol 122:211–237

    Google Scholar 

  • Hirsch AM, Bhuvaneswari TV, Torrey JG, Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci U S A 86:1244–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horchani F, Prevot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Aschi-Smiti S, Puppo A, Brouquisse R (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter WJ (2001) Influence of root-applied epibrassinolide and carbenoxolone on the nodulation and growth of soybean (Glycine max L.) seedlings. J Agron Crop Sci 186:217–221

    CAS  Google Scholar 

  • Huo XY, Schnabel E, Hughes K, Frugoli J (2006) RNAi phenotypes and the localization of a protein::GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul 25:156–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA (2013) The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot 64:5395–5409

    CAS  PubMed  Google Scholar 

  • Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier JP, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    CAS  PubMed  Google Scholar 

  • Kato K, Kanahama K, Kanayama Y (2010) Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules. J Plant Physiol 167:238–241

    CAS  PubMed  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul 25:110–119

    CAS  Google Scholar 

  • Kinkema M, Gresshoff PM (2008) Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK. Mol Plant Microbe Interact 21:1337–1348

    CAS  PubMed  Google Scholar 

  • Kisiala A, Laffont C, Emery JRN, Frugier F (2013) Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonodulating strains. Mol Plant-Microbe Interact 26:1225–1231

    CAS  PubMed  Google Scholar 

  • Kondorosi E, Mergaert P, Kereszt A (2013) A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. Annu Rev Microbiol 67:611–628

    CAS  PubMed  Google Scholar 

  • Kouchi H, Shimomura K, Hata S, Hirota A, Wu G, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M, Yokoyama T, Ohyama T, Asamizu E, Kuwata C, Shibata D, Tabata S (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11:263–274

    CAS  PubMed  Google Scholar 

  • Krusell L, Sato N, Fukuhara I, Koch BEV, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T, Sato S, Tabata S, Duc G, Parniske M, Wang TL, Kawaguchi M, Stougaard J (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65:861–871

    CAS  PubMed  Google Scholar 

  • Kuppusamy KT, Ivashuta S, Bucciarelli B, Vance CP, Gantt JS, VandenBosch KA (2009) Knockdown of CELL DIVISION CYCLE16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula. Plant Physiol 151:1155–1166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laporte P, Satiat-Jeunemaitre B, Velasco I, Csorba T, Van de Velde W, Campalans A, Joszef B, Arevalo-Rodriguez M, Crespi M (2010) A novel RNA-binding peptide regulates the establishment of the Medicago truncatula-Sinorhizobium meliloti nitrogen fixing symbiosis. Plant J 62:24–38

    CAS  PubMed  Google Scholar 

  • Li X, Lei M, Yan Z, Wan Q, Chen A, Sun J, Lou D (2014) The REL3-mediatedTAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus. New Phytol 201:531–544

    CAS  Google Scholar 

  • Lian B, Zhou X, Miransari M, Smith DL (2000) Effects of salicylic acid on the development and root nodulation of soybean seedlings. J Agron Crop Sci 185:187–192

    CAS  Google Scholar 

  • Liang Y, Harris JM (2005) Response of root branching to abscisic acid is correlated with nodule formation both in legumes and nonlegumes. Am J Bot 92:1675–1683

    CAS  PubMed  Google Scholar 

  • Liang Y, Mitchell DM, Harris JM (2007) Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant. Dev Biol 304:297–307

    CAS  PubMed  Google Scholar 

  • Lievens S, Goormachtig S, Den Herder J, Capoen W, Mathis R, Hedden P, Holster M (2005) Gibberellins are involved in nodulation of Sesbania rostrata. Plant Physiol 139:1366–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ligero F, Lluch C, Olivares O (1986) Evolution of ethylene from roots of Medicago sativa plants inoculated with Rhizobium meliloti. J Plant Physiol 125:361–366

    CAS  Google Scholar 

  • Lim CW, Lee YW, Hwang CH (2011) Soybean nodule-enhanced CLE peptides in roots act as signals in GmNARK-mediated nodulation suppression. Plant Cell Physiol 52:1613–1627

    CAS  PubMed  Google Scholar 

  • Lin YH, Ferguson BJ, Kereszt A, Gresshoff PM (2010) Suppression of hypernodulation in soybean by a leaf-extracted, NARK- and Nod factor dependent, low molecular mass fraction. New Phytol 185:1074–1086

    CAS  PubMed  Google Scholar 

  • Lin YH, Lin MH, Gresshoff PM, Ferguson BJ (2011) An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants. Nat Protoc 6:36–45

    CAS  PubMed  Google Scholar 

  • Lin MH, Gresshoff PM, Ferguson BJ (2012) Systemic regulation of soybean nodulation by acidic growth conditions. Plant Physiol 160:2028–2039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Kohlen W, Lillo A, den Camp RO, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang WC, Hooiveld GLEJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–3865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, Bonfante P, Lovisolo C, Bouwmeester H, Cardinale F (2013) CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model Lotus japonicus. J Exp Bot 64:1967–1981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lohar DP, Schaff JE, Laskey JD, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobium symbioses. Plant J 38:203–214

    CAS  PubMed  Google Scholar 

  • Lohar D, Stiller J, Kam J, Stacey G, Gresshoff PM (2009) Ethylene insensitivity conferred by the Arabidopsis Etr1-1 receptor gene alters the nodulation response of transgenic Lotus japonicus. Ann Bot 104:277–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mabood F, Smith DL (2005) Pre-inoculation of Bradyrhizobium japonicum with jasmonates accelerates nodulation and nitrogen fixation in soybean (Glycine max) at optimal and suboptimal root zone temperatures. Physiol Plant 125:311–323

    CAS  Google Scholar 

  • Mabood F, Souleimanov A, Khan W, Smith DL (2006) Jasmonates induce Nod factor production by Bradyrhizobium japonicum. Plant Physiol Biochem 44:759–765

    CAS  PubMed  Google Scholar 

  • Maekawa T, Maekawa-Yoshikawa M, Takeda N, Imaizumi-Anraku H, Murooka Y, Hayashi M (2009) Gibberellin controls the nodulation signaling pathway in Lotus japonicus. Plant J 58:183–194

    CAS  PubMed  Google Scholar 

  • Mao G, Turner M, Yu O, Subramanian S (2013) miR393 and miR164 influence indeterminate but not determinate nodule development. Plant Signal Behav 9(1):e26753

    Google Scholar 

  • Marhavy P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, Parezova M, Petrasek J, Friml J, Kleine-Vehn J, Benkova E (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796–804

    CAS  PubMed  Google Scholar 

  • Martínez-Abarca F, Herrera-Cervera JA, Bueno P, Sanjuan J, Bisseling T, Olivares J (1998) Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Mol Plant Microbe Interact 11:153–155

    Google Scholar 

  • Mathesius U (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J Exp Bot 52:419–426

    CAS  PubMed  Google Scholar 

  • Mathesius U (2008) Auxin: at the root of nodule development? Funct Plant Biol 35:651–668

    CAS  Google Scholar 

  • Mathesius U (2010) The role of auxin in root-symbiont and root-pathogen interactions – from development to defense. Prog Bot 71. In: Lüttge UE, Beyschlag W, Büdel B, Francis D (ed) Springer Verlag Berlin, Heidelberg, p 185–210

  • Mathesius U, Bayliss C, Weinman JJ, Schlaman HRM, Spaink HP, Rolfe BG, McCully ME, Djordjevic MA (1998a) Flavonoids synthesized in cortical cells during nodule initiation are early developmental markers in white clover. Mol Plant-Microbe Interact 11:1223–1232

    CAS  Google Scholar 

  • Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA (1998b) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34

    CAS  PubMed  Google Scholar 

  • Mathesius U, Charon C, Rolfe BG, Kondorosi A, Crespi M (2000) Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Mol Plant-Microbe Interact 13:617–628

    CAS  PubMed  Google Scholar 

  • Meilhoc E, Cam Y, Skapski A, Bruand C (2010) The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti. Mol Plant Microbe Interact 23:748–759

    CAS  PubMed  Google Scholar 

  • Meilhoc E, Boscari A, Bruand C, Puppo A, Brouquisse R (2011) Nitric oxide in legume–Rhizobium symbiosis. Plant Sci 181:573–581

    CAS  PubMed  Google Scholar 

  • Melo PM, Silva LS, Ribeiro I, Seabra AR, Carvalho HG (2011) Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration. Plant Physiol 157:1505–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E (2003) A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol 132:161–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minami E, Kouchi H, Cohn JR, Ogawa T, Stacey G (1996) Expression of the early nodulin, ENOD40, in soybean roots in response to various lipo-chitin signal molecules. Plant J 10:23–32

    CAS  PubMed  Google Scholar 

  • Miyata K, Kawaguchi M, Nakagawa T (2013) Two distinct EIN2 genes cooperatively regulate ethylene signalling in Lotus japonicus. Plant Cell Physiol 54:1469–1477

    CAS  PubMed  Google Scholar 

  • Miyazawa H, Oka-Kira E, Sato N, Takahashi H, Wu GJ, Sato S, Hayashi M, Betsuyaku S, Nakazono M, Tabata S, Harada K, Sawa S, Fukuda H, Kawaguchi M (2010) The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and nonsymbiotic shoot development in Lotus japonicus. Development 137:4317–4325

    CAS  PubMed  Google Scholar 

  • Morato do Canto A, Ceciliato PH, Ribeiro B, Ortiz Morea FA, Franco Garcia AA, Silva-Filho MC, Moura DS (2014) Biological activity of nine recombinant AtRALF peptides: implications for their perception and function in Arabidopsis. Plant Physiol Biochem 75:45–54

    CAS  PubMed  Google Scholar 

  • Morgan PW, Gausman HW (1966) Effects of ethylene on auxin transport. Plant Physiol 41:45–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’Haeseleer K, Holsters M, Goormachtig S (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortier V, De Wever E, Vuylsteke M, Holsters M, Goormachtig S (2012) Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. Plant J 70:367–376

    CAS  PubMed  Google Scholar 

  • Mortier V, Wasson A, Jaworek P, De Keyser A, Decroos M, Holsters M, Tarkowski P, Mathesius U, Goormachtig S (2014) Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. New Phytol. doi:10.1111/nph.12681

    PubMed  Google Scholar 

  • Murray JD, Karas BJ, Sato S, Tabata S, Amoyt L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104

    CAS  PubMed  Google Scholar 

  • Murset V, Hennecke H, Pessi G (2012) Disparate role of rhizobial ACC deaminase in root-nodule symbioses. Symbiosis 57:43–50

    CAS  Google Scholar 

  • Nakagawa T, Kawaguchi M (2006) Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. Plant Cell Physiol 47:176–180

    CAS  PubMed  Google Scholar 

  • Navia-Gine WG, Yuan JS, Mauromoustakos A, Murphy JB, Chen F, Korth KL (2009) Medicago truncatula (E)-beta-ocimene synthase is induced by insect herbivory with corresponding increases in emission of volatile ocimene. Plant Physiol Biochem 47:416–425

    CAS  PubMed  Google Scholar 

  • Nukui N, Ezura H, Minamisawa K (2004) Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. Plant Cell Physiol 45:427–435

    CAS  PubMed  Google Scholar 

  • Ohyama K, Ogawa M, Matsubayashi Y (2008) Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J 55:152–160

    CAS  PubMed  Google Scholar 

  • Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol 50:67–77

    CAS  PubMed  Google Scholar 

  • Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M (2013) Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat Commmun 4:2191. doi:10.1038/ncomms3191

    Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    CAS  PubMed  Google Scholar 

  • Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Op den Camp RHM, De Mita S, Lillo A, Cao Q, Limpens E, Bisseling T, Geurts R (2011) A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-a response regulators. Plant Physiol 157:2013–2022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortu G, Balestrini R, Pereira PA, Becker JD, Küster H, Bonfante P (2012) Plant genes related to gibberellin biosynthesis and signaling are differentially regulated during the early stages of AM fungal interactions. Mol Plant 5:951–954

    CAS  PubMed  Google Scholar 

  • Pacios-Bras C, Schlaman HRM, Boot K, Admiraal P, Langerak JM, Stougaard J, Spaink HP (2003) Auxin distribution in Lotus japonicus during root nodule development. Plant Mol Biol 52:1169–1180

    CAS  PubMed  Google Scholar 

  • Palma F, López-Gómez M, Tejera NA, Lluch C (2014) Involvement of abscisic acid in the response of Medicago sativa plants in symbiosis with Sinorhizobium meliloti to salinity. Plant Sci 223:16–24

    CAS  PubMed  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci U S A 98:12843–12847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563

    CAS  PubMed  Google Scholar 

  • Peer WA, Blakeslee JJ, Ynag H, Murphy AS (2010) Seven things we think we know about auxin transport. Mol Plant 4:487–504

    Google Scholar 

  • Peer WA, Cheng Y, Murphy AS (2013) Evidence of oxidative attentuatin of auxin signaling. J Exp Bot 64:2629–2639

    CAS  PubMed  Google Scholar 

  • Peleg-Grossman S, Golani Y, Kaye Y, Melamed-Book N, Levine A (2009) NPR1 protein regulates pathogenic and symbiotic interactions between Rhizobium and legumes and non-legumes. PLoS One 4:e8399

    PubMed  PubMed Central  Google Scholar 

  • Penmetsa RV, Cook RD (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 257:527–530

    Google Scholar 

  • Penmetsa RV, Frugoli JA, Smith LS, Long SR, Cook DR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131:998–1008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish J-C, Nam YW, Engstrom E, Xu K, Schiksel G, Pereira M, Baek JM, Lopez-Meyer M, Long SR, Harrison MJ, Singh KB, Kiss GB, Cook DR (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595

    CAS  PubMed  Google Scholar 

  • Penterman J, Abo RP, De Nisco NJ, Arnold MF, Longhi R, Zanda M, Walker GC (2014) Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. Proc Natl Acad Sci U S A 111:3561–3566

    CAS  PubMed  Google Scholar 

  • Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T (2007) Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol 7:21

    PubMed  PubMed Central  Google Scholar 

  • Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, Frugier F (2011) MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J 65:622–633

    CAS  PubMed  Google Scholar 

  • Podlešáková K, Fardoux J, Patrel D, Bonaldi K, Novák O, Strnad M, Giraud E, Spíchal E, Nouwen N (2013) Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes. Mol Plant Microbe Interact 26:1232–1238

    PubMed  Google Scholar 

  • Poustini K, Mabood F, Smith DL (2005) Low root zone temperature effects on bean (Phaseolus vulgaris L.) plants inoculated with Rhizobium leguminosarum bv. phaseoli pre-incubated with methyl jasmonate and/or genistein. Acta Agric Scand Sect B Soil Plant Sci 55:293–298

    CAS  Google Scholar 

  • Prayitno J, Imin N, Rolfe BG, Mathesius U (2006a) Identification of ethylene-mediated protein changes during nodulation in Medicago truncatula using proteome analysis. J Proteome Res 5:3084–3095

    CAS  PubMed  Google Scholar 

  • Prayitno J, Rolfe BG, Mathesius U (2006b) The ethylene insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142:168–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, Degreef J, Schell J, Vanonckelen H (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett 282:53–55

    CAS  PubMed  Google Scholar 

  • Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R (2013) Hydrogen peroxide and nitric oxide: key regulators of the legume-Rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 18:2202–2219

    CAS  PubMed  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    CAS  PubMed  Google Scholar 

  • Reid DE, Ferguson BJ, Gresshoff PM (2011a) Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol Plant Microbe Interact 24:606–618

    CAS  PubMed  Google Scholar 

  • Reid DE, Ferguson BJ, Hayashi S, Lin YH, Gresshoff PM (2011b) Molecular mechanisms controlling legume autoregulation of nodulation. Ann Bot 108:789–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reid DE, Hayashi S, Lorenc M, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ (2012) Identification of systemic responses in soybean nodulation by xylem sap feeding and complete transcriptome sequencing reveal a novel component of the autoregulation pathway. Plant Biotechnol J 10:680–689

    CAS  PubMed  Google Scholar 

  • Reid D, Li D, Ferguson BJ, Gresshoff PM (2013) Structure-function analysis of the GmRIC1 signal peptide and CLE domain required for nodulation control in soybean. J Exp Bot 64:1575–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rightmyer AP, Long SR (2011) Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors. Mol Plant-Microbe Interact 24:1372–1384

    CAS  PubMed  Google Scholar 

  • Roberts I, Smith S, De Rybel B, Van Den Broeke J, Smet W, De Cokere S, Mispelaere M, De Smet I, Beeckman T (2013) The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development. J Exp Bot 64:5371–5381

    CAS  PubMed  Google Scholar 

  • Röhrig H, Schmidt J, Miklashevichs E, Schell J, John M (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci U S A 99:1915–1920

    PubMed  PubMed Central  Google Scholar 

  • Rosas S, Soria R, Correa N, Abdala G (1998) Jasmonic acid stimulates the expression of nod genes in Rhizobium. Plant Mol Biol 38:1161–1168

    CAS  PubMed  Google Scholar 

  • Sánchez C, Gates AJ, Meakin GE, Uchiumi T, Girard L, Richardson DJ, Bedmar EJ, Delgado MJ (2010) Production of nitric oxide and nitrosylleghemoglobin complexes in soybean nodules in response to flooding. Mol Plant Microbe Interact 23:702–711

    PubMed  Google Scholar 

  • Sato T, Fujikake H, Ohtake N, Sueyoshi K, Takahashi T, Sato A, Ohyama T (2002) Effect of exogenous salicylic acid supply on nodule formation of hypernodulating mutant and wild type of soybean. Soil Sci Plant Nutr 48:413–420

    CAS  Google Scholar 

  • Saur IM, Oakes M, Djordjevic MA, Imin N (2011) Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula. New Phytol 190:865–874

    CAS  PubMed  Google Scholar 

  • Schmidt JS, Harper JE, Hoffman TK, Bent AF (1999) Regulation of soybean nodulation independent of ethylene signalling. Plant Physiol 119:951–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnabel E, Journet EP, Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encoding a CLV1-like receptor-like kinase regulates both nodule number and root length. Plant Molec Biol 58:809–822

  • Seo HS, Li J, Lee SY, Yu JW, Kim KH, Lee SH, Lee IJ, Paek NC (2006) The hypernodulating nts mutation induces jasmonate synthetic pathway in soybean leaves. Mol Cels 24:185–193

    Google Scholar 

  • Shahid MA, Pervez MA, Balal RM, Mattson NS, Rashid A, Ahmad R, Ayyub CM, Abbas T (2011) Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Aust J Crop Sci 5:500–510

    CAS  Google Scholar 

  • Shimoda Y, Shimoda-Sasakura F, Kuch K, Kanamori N, Nagata M, Suzuki A, Abe M, Hagashi S, Uchiumi T (2009) Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. Plant J 57:254–263

    CAS  PubMed  Google Scholar 

  • Soto MJ, Fernández-Aparicio M, Castellanos-Morales V, García-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    CAS  Google Scholar 

  • Sousa C, Johansson C, Charon C, Manyani H, Sautter C, Kondorosi A, Crespi M (2001) Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex. Mol Cell Biol 21:354–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    CAS  PubMed  Google Scholar 

  • Spoel SH, Dong XN (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348–351

    CAS  PubMed  Google Scholar 

  • Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25

    CAS  PubMed  Google Scholar 

  • Sprent JI (2008) 60Ma of legume nodulation: what’s new? what’s changing? J Exp Bot 59:1081–1084

    CAS  PubMed  Google Scholar 

  • Stacey G, McAlvin CB, Kim SY, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol 141:1473–1481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staehelin C, Charon C, Boller T, Crespi M, Kondorosi A (2001) Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules. Proc Natl Acad Sci U S A 98:15366–15371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48:261–273

    CAS  PubMed  Google Scholar 

  • Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285

    CAS  PubMed  Google Scholar 

  • Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allow integration of diverse inputs for regulation of nodulation. Plant J 46:961–970

    CAS  PubMed  Google Scholar 

  • Suzaki T, Yano K, Ito M, Umehara Y, Suganuma N, Kawaguchi M (2012) Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development 139:3997–4006

    CAS  PubMed  Google Scholar 

  • Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K, Uchiumi T, Higashi S, Han SY, Yoshida S, Asami T, Abe M (2004) Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol 45:914–922

    CAS  PubMed  Google Scholar 

  • Suzuki A, Suriyagoda L, Shigeyama T, Tominaga A, Sasaki M, Hiratsuka Y, Yoshinaga A, Arima S, Agarie S, Sakai T, Inada S, Jikumaru Y, Kamiya Y, Uchiumi T, Abe M, Hashiguchi M, Akashi R, Sato S, Kaneko T, Tabata S, Hirsch AM (2011) Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling. Proc Natl Acad Sci U S A 108:16837–16842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takanashi K, Sugiyama A, Yazaki K (2011) Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta 234:73–81

    CAS  PubMed  Google Scholar 

  • Terakado J, Fujihara S, Goto S, Kuratani R, Suzuki Y, Yoshida S, Yoneyama T (2005) Systemic effect of a brassinosteroid on root nodule formation in soybean as revealed by the application of brassinolide and brassinazole. Soil Sci Plant Nutr 51:389–395

    CAS  Google Scholar 

  • Tirichine L, James EK, Sandal N, Stougaard S (2006) Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia. Mol Plant Microbe Interact 19:373–382

    CAS  PubMed  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    CAS  PubMed  Google Scholar 

  • Tiricz H, Szűcs A, Farkas A, Pap B, Lima RM, Maróti G, Kondorosi E, Kereszt A (2013) Antimicrobial nodule-specific cysteine-rich peptides induce membrane depolarization-associated changes in the transcriptome of Sinorhizobium meliloti. Appl Environ Microbiol 79:6737–6746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho K, Hashiguchi M, Akashi R, Hirsch AM, Arima S, Suzuki A (2009) Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus. Plant Physiol 151:1965–1976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner M, Nizampatam NR, Baron M, Coppin S, Damodaran S, Adhikari S, Arunchalam SP, Yu O, Subramanian S (2013) Ectopic expression of miR160results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiol 162:2042–2055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Upreti KK, Murti GSR (2004) Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biol Plant 48:407–411

    CAS  Google Scholar 

  • Valdivia ER, Hertweck KL, Cho SK, Walker JC (2013) DVL/RTFL. In: Handbook of biologically active peptides, 2nd edn. Ed: Kastin AJ, Elsevier Science Publishing, Academic Press, pp. 15–19

  • Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho KI, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126

    PubMed  Google Scholar 

  • van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U (2006) Defective long distance auxin transport regulation in the Medicago truncatula super numeric nodulation mutant. Plant Physiol 140:1494–1506

    PubMed  PubMed Central  Google Scholar 

  • van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144:1115–1131

    PubMed  PubMed Central  Google Scholar 

  • Van Spronsen PC, Tak T, Rood AM, van Brussel AA, Kijne JW, Kj B (2003) Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Mol Plant Microbe Interact 16:83–91

    PubMed  Google Scholar 

  • Vardhini BV, Rao SSR (1999) Effect of brassinosteroids on nodulation and nitrogenase activity in groundnut (Arachis hypogaea L.). Plant Growth Regul 28:165–167

    CAS  Google Scholar 

  • Wan X, Hontelez J, Lillo A, Guarnerio C, van de Peut D, Fedorova E, Bisseling T, Franssen H (2007) Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. J Exp Bot 58:2033–2041

    CAS  PubMed  Google Scholar 

  • Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S, Bisseling T, Long SR (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327:1126–1129

    CAS  PubMed  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen J, Lease KA, Walker JC (2004) DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J 37:668–677

    CAS  PubMed  Google Scholar 

  • Yang WC, Katinakis P, Hendriks P, Smolders A, de Vries F, Spee J, van Kammen A, Bisseling T, Franssen H (1993) Characterisation of GmENOD40, a gene showing novel patterns of cell specific expression during soybean nodule development. Plant J 3:573–585

    CAS  PubMed  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    CAS  PubMed  Google Scholar 

  • Zhang J, Subramanian S, Stacey G, Yu O (2009a) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Due to the large size of this research field, a number of publications were undoubtedly overlooked. We thank Peter Gresshoff for careful reading of the manuscript. Financial support was provided to BJF by the Australian Research Council Discovery Project grants (DP130103084 and DP130102266) as well as University of Queensland strategic funds. UM was supported by a Future Fellowship (FT100100669) and a Discovery Project grant (DP120102970) from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Mathesius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, B.J., Mathesius, U. Phytohormone Regulation of Legume-Rhizobia Interactions. J Chem Ecol 40, 770–790 (2014). https://doi.org/10.1007/s10886-014-0472-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0472-7

Keywords

Navigation