Skip to main content
Log in

Changes in Energy Metabolism and Antioxidant Defense Systems During Seed Germination of the Weed Species Ipomoea triloba L. and the Responses to Allelochemicals

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The relationships between changes in energy metabolism and the antioxidant defense system in the weed species Ipomoea triloba L. during seed germination and early seedling growth were investigated. The effects of some common allelochemicals on these parameters also were studied. Respiratory activity and the activities of alcohol dehydrogenase, superoxide dismutase, catalase, guaicol peroxidase, ascorbate peroxidase, glutathione reductase, and lipoxygenase were measured. Mitochondrial oxidative phosphorylation resumed shortly after the seed imbibition period, as indicated by considerable KCN-sensitive respiratory activity in embryos of I. triloba. The occurrence of superoxide dismutase, catalase, guaicol peroxidase, and lipoxygenase activities in the embryos, along with significant KCN-insensitive respiration, suggest that production of reactive oxygen species (ROS) is initiated as soon as mitochondrial respiration is resumed. All assayed antioxidant enzymes were present in the embryos except ascorbate peroxidase, which appeared only in primary roots. The activities of antioxidant enzymes increased after completion of germination, especially in primary roots. Superoxide dismutase, catalase, and guaicol peroxidase probably were the crucial enzymes involved in the neutralization of ROS, since they had higher levels of activity compared with other enzymes, such as ascorbate peroxidase and glutathione reductase. When seeds were grown in the presence of α-pinene, coumarin, quercetin, and ferulic acid, there was an additional increase in activities of antioxidant enzymes, as well as increases in lipoxygenase activity and KCN-insensitive respiration, suggesting a further increase in ROS generation. The antioxidant defense system of I. triloba was not effective in preventing lipid peroxidation caused by α-pinene. The data indicate that during seed germination and initial growth of I. triloba, a period when antioxidant enzyme activity increases to counteract the harmful ROS effects produced during mitochondrial metabolism resumption, the presence of allelochemicals, which cause further oxidative stress, may leave the seeds/seedlings more vulnerable to cellular dysfunction and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abenavoli, M. R., Cacco, G., Sorgonà, A., Marabottini, R., Paolacci, A. R., Ciaffi, M., and Badiani, M. 2006. The inhibitory effect of coumarin on the germination of durum wheat (Triticum turgidum ssp. durum, CV. SIMETO) seeds. J. Chem. Ecol. 32:489–506.

    Article  PubMed  CAS  Google Scholar 

  • Abrahim, D., Francisquine, A. C., Pergo, E. M., Bracht, A., and Ishii-Iwamoto, E. L. 2003a. Effects of α-pinene on the mitochondrial respiration of maize seedlings. Plant Physiol. Biochem. 41:986–991.

    Article  Google Scholar 

  • Abrahim, D., Takahashi, L., Kelmer-Bracht, A. M., and Ishii-Iwamoto, E. L. 2003b. Effects of phenolic acids and monoterpenes on the mitochondrial respiration of soybean hypocotyls axes. Allelopathy J. 11:21–30.

    Google Scholar 

  • Aebi, H. 1984. Catalase in vitro. Method. Enzymol. 105:121–126.

    Article  CAS  Google Scholar 

  • Almagro, L., Gómez-Ros, L. V., Belchi-Navarro, S., Bru, R., Ros-Barceló, A., and Pedreño, M. A. 2009. Class III peroxidases in plant defence reactions. J. Exp. Bot. 60:377–390.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, B., Cheesbrough, T. M., and Zimmer, S. 1981. Lipoxygenase from soyabeans. Method. Enzymol. 71:441–451.

    Article  CAS  Google Scholar 

  • Bailly, C., Benamar, A., Corbineau, F., and Côme, D. 1996. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol. Plantarum 97:104–110.

    Article  CAS  Google Scholar 

  • Bailly, C., Audigier, C., Ladonne, F., Wagner, M. H., Coste, F., Corbineau, F., and Côme, D. 2001. Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. J. Exp. Bot. 52:701–708.

    PubMed  CAS  Google Scholar 

  • Bailly, C., Bogatek-Leszczynska, R., Côme, D., and Corbineau, F. 2002. Changes in activity of antioxidant enzymes and lipoxygenase during growth of sunflower seedlings from seeds of different vigour. Seed Sci. Res. 12:47–55.

    Article  CAS  Google Scholar 

  • Bailly, C., El-Maarouf-Bouteau, H., and Corbineau, F. 2008. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C. R. Biologies 331:806–814.

    Article  PubMed  CAS  Google Scholar 

  • Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M, and Vivanco, J. M. 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:2377–1380.

    Article  PubMed  CAS  Google Scholar 

  • Baker, C. J., and Orlandi, E. W. 1995. Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 33:299–321.

    Article  PubMed  CAS  Google Scholar 

  • Batish, D. R., Setia, N., Singh. H. P., and Kohli, R. K. 2004. Phytotoxicity of Lemon-scented Eucalypt oil and its potential use as bioherbicide. Crop Prot. 23:1209–1214.

    Article  CAS  Google Scholar 

  • Batish, D. R., Singh, H. P., Setia, N., Kaur, S., and Kohli, R. K. 2006. 2-benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol. Biochem. 44:819–827.

    Article  PubMed  CAS  Google Scholar 

  • Batish, D. R., Lavanya, K., Singh, H. P., and Kohli, R. K. 2007. Phenolic allelochemicals released by Chenopodium murale affect the growth nodulation and macromolecule content in chickpea and pea. Plant Growth Regul. 51:119–128.

    Article  CAS  Google Scholar 

  • Boyd, N., and Acker, R. V. 2004. Seed germination of common weed species as affected by oxygen concentration, light and osmotic potential. Weed Sci. 52:589–596.

    Article  CAS  Google Scholar 

  • Blokhin, A. O., Virolainen, E., and Fagerstedt, K. V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Botany 91:179–194.

    Article  Google Scholar 

  • Chiapuasis, G., Sanchez, A. M., Reigosa, M. J., González, L., and Pellissier, F. 1997. Do germination indices adequately reflect allelochemical effects on the germination process?. J. Chem. Ecol. 23:203–209.

    Google Scholar 

  • Chon, S. U., and Kim, Y. M. 2004. Herbicidal potential and quantification of suspected allelochemicals from four grass crop extracts. J. Agro. Crop Sci. 190:145–150.

    Article  CAS  Google Scholar 

  • Clifton, R., Lister, R., Parker, K. L., Sappl, P. G., Elhafez, D., Millar, A. H., Day, D. A., and Whelan, J. 2005. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol. Biol. 58:193–212.

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Ortega, R., Ayala-Cordero, G., and Anaya, A. L. 2002. Allelochemical stress produced by aqueous leachate of Callicarpa acuminate: effects on roots of bean, maize, and tomato. Physiol. Plantarum 116:20–27.

    Article  PubMed  CAS  Google Scholar 

  • De Tullio, M. C., and Arrigoni, O. 2003. The ascorbic acid system in seeds: to protect and to serve. Seed Sci. Res. 13:249–260.

    Article  Google Scholar 

  • Dudai, N., Poljakoff-Mayber, A., Mayer, A. M., Putievsky, E., and Lerner, H. R. 1999. Essential oils as allelochemical and their potential use as bioherbicides. J. Chem. Ecol. 25:1079–1089.

    Article  CAS  Google Scholar 

  • Duke, S. O., Dayan, F. E., Romagni, J. G., and Rimando, A. M. 2000. Natural products as sources of herbicides: current status and future trends. Weed Res. 40:99–111.

    Article  CAS  Google Scholar 

  • Einhellig, F. A. 1995. Mechanism of action of allelochemicals in allelopathy, pp 96–116, in Inderjit, K. M. M. Dakshini and F. A. Einhellig (eds.). Allelopathy. Organims, processes, and applications. ACS Symposium Series 582, Washington DC, USA.

  • Estabrook, R. W. 1967. Mitochondrial respiratory control and polarographic measurements of ADP/O ratio. Method. Enzymol. 10:41–47.

    Article  CAS  Google Scholar 

  • Feussner, I., Balkenhol, T. J., Porzel, A., and Wasternack, C. 1997. Structural elucidation of oxygenated storage lipids in cucumber cotyledons. Implications of lipid body lipoxygenase in lipid mobilization during germination. J. Biol. Chem. 272:21635–21641.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C. H., and Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133:21–25.

    Article  Google Scholar 

  • Foyer, C. H., Lelandais, M., and Knert, K. J. 1994. Photooxidative stress in plants. Physiol. Plantarum. 92:696–717.

    Article  CAS  Google Scholar 

  • Giannopolitis, C. N., and Ries, S. K. 1977. Superoxide dismutases, I: occurrence in higher plants. Plant Physiol. 59:309–314.

    Article  PubMed  CAS  Google Scholar 

  • Gidrol, X., Lin, W. S., Dégousée, N., Yip, S. F., and Kush, A. 1994. Accumulation of reactive oxygen species and oxidation of cytokinin in germination soybean seeds. Eur. J. Biochem. 224:21–28.

    Article  PubMed  CAS  Google Scholar 

  • Golisz, A., Sugano, M., and Fuji, Y. 2008. Microarray expression profile of Arabidopsis thaliana L. in response to allelochemcials identified in buckwheat. J. Exp. Bot. 59:3099–3109.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, B. A., Mcphail, D. B., and Linehan, D. J. 1986. Oxygen-induced free radical in wheat roots. Free Radic. Res. Commun. 2:173–178.

    Article  PubMed  CAS  Google Scholar 

  • Heath, R. L., and Packer, L. 1968. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acids peroxidation. Arch. Biochem. Biophys. 125:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand, D. F. 1989. Lipoxygenases. Physiol. Plantarum 76:249–253.

    Article  CAS  Google Scholar 

  • Holm, L., Doll, J., Holm, E., Pancho, J., and Herberger, J. 1997. World weeds, natural histories and distribution, in J. WILEY and S. INC., New York, USA.

  • Holtman, W. L., Van Duijn, G., Sedee, N. J. A., and Douma, A. C. 1996. Differential expression of lipoxygenase isozymes in embryos of germinationg barley. Plant Physiol. 111:569–576.

    PubMed  CAS  Google Scholar 

  • Inderjit, and Duke, S. O. 2003. Ecophysiological aspects of allelopathy. Planta. 217:529–539.

    Article  PubMed  CAS  Google Scholar 

  • Ishii-Iwamoto, E. L., Abrahim, D., Sert, M. A., Bonato, C. M., Kelmer-Bracht, A. M., and Bracht, A. 2006. Mitochondria as a site of allelochemical action, pp. 267–284, in M. J. Reigosa, N. Pedrol and L. González (eds.) Allelopathy: A Physiological Process with Ecological Implications. (Org) Springer Science, Netherlands.

    Google Scholar 

  • Kern, K. A., Pergo, E. M., Kagami, F. L., Arraes, L. S., Sert, M. A., and Ishii-Iwamoto, E. L. 2009. The phytotoxic effect of exogenous ethanol on Euphorbia heterophylla L. Plant Physiol. Biochem. 47:1095–1101.

    Article  PubMed  CAS  Google Scholar 

  • Kohli, R. K., Batish, D. R., and Singh, H. P. 2006. Allelopathic interactions in agroecosystems, pp. 465-493, in M. J. Reigosa, N. Pedrol and L. González (eds.). Allelopathy: A Physiological Process with Ecological Implications. Springer, Netherlands.

    Google Scholar 

  • Kruse, N. D., Vidal, R. A., Dalmarz, C., Trezzi, M. M., and Siqueira, I. 2006. Estresse oxidativo em girasol (Helianthus annuus) indica sinergismo para a mistura dos herbicidas metribuzin e clomazone. Planta Daninha 24:379–390.

    Article  Google Scholar 

  • Kwak, J. M., Nguyen, V., and Schoeder, J. I. 2006. The role of reactive oxidative species in hormonal responses. Plant Physiol. 141:323–329.

    Article  PubMed  CAS  Google Scholar 

  • Labouriau, L. G., and Osborn, J. H. 1984. Temperature dependence of the germination of tomato seeds. J. Thermal Biol. 9:285–294.

    Article  Google Scholar 

  • Larkin, P. J. 1987. Calmodulin levels are not responsible for aluminum tolerance in wheat. Aust. J. Plant Physiol. 14:377–387.

    Article  CAS  Google Scholar 

  • Lee, C. Y. 1982. Alcohol dehydrogenase from Drosophila melanogaster. Method Enzymol. 89:445–450.

    Article  CAS  Google Scholar 

  • Lowry, O., Rosebrough, N. J., and Farr, A. L. 1951. Protein measurements with the folin phenol. J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  • Macías, F. A. 1995. Allelopathy in the search for natural herbicide models, pp. 310–327, in Inderjit, K. M. M. Dakshini and F. A. Einhellig (eds.). Allelopathy. Organims, Processes, and Applications. ACS Symposium Series 582, Washington DC, USA.

  • Maxweel, D. P., Wang, Y., and McIntosh, L. 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl Acad. Sci USA 96:8271–8276.

    Article  Google Scholar 

  • McDonald, M. B. 1999. Seed deterioration: physiology, repair and assessment. Seed Sci. Technol. 27:177–237.

    Google Scholar 

  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410.

    Article  PubMed  CAS  Google Scholar 

  • Müsel, G., Schindler, T., Bergfeld, R., Ruel, K., Jaquet, G., Lapieree, C., Speth, V., and Schopepfer, P. 1997. Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta. 201:146–159.

    Article  Google Scholar 

  • Nakano, Y., and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.

    CAS  Google Scholar 

  • Navrot, N., Rouhier, N., Gelhaye, E., and Jacquot, J. P. 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plantarum, 129:185–195.

    Article  CAS  Google Scholar 

  • Noctor, G., and Foyer, C. H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Phys. 49:249–279.

    Article  CAS  Google Scholar 

  • Oracz, K., El-Maarouf-Bouteau, H., Kranner, I., Bogatek, R., Corbineau, F., and Bailly, C. 2009. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol. 150:496–505.

    Article  Google Scholar 

  • Passardi, F., Cosio, C., Penel, C., and Dunand, C. 2005. Peroxidases have more function than a Swiss army knife. Plant Cell Rep. 24:255–265.

    Article  PubMed  CAS  Google Scholar 

  • Pergo, E. M., Abrahim, D., Silva, P. C. S., Kern, K. A., Silva, L. J., Voll, E., and Ishii-Iwamoto, E. L. 2008. Bidens pilosa L. exhibits high sensitivity to coumarin in comparison with three other weed species. J. Chem. Ecol. 34:499–507.

    Article  PubMed  CAS  Google Scholar 

  • Porta, H., and Rocha-Sosa, M. 2002. Plant Lipoxygenases. Physiological and Molecular Features. Plant Physiol. 130:15–21.

    Article  PubMed  CAS  Google Scholar 

  • Puntarullo, S., Galleano, M., Sanchez, R. A., and Boveris, A. 1988. Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination. Plant Physiol. 86:626–630.

    Article  Google Scholar 

  • Pütter, J. 1974. Peroxidases, pp. 685, in H. U. Bergmeryer (ed.). Methods of Enzymatic Analysis. Verlag Chemie, Weinheim, Academic Press Inc, New York, USA.

    Google Scholar 

  • Qian, H., Xu, X., Chen, W., Jiang, H., Yuanxiang, J., Liu, W., and Fu, Z. 2009. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Clorella vulgaris. Chemosphere 75:368–375.

    Article  PubMed  CAS  Google Scholar 

  • Quiroga, M., Guerrero, C., Botella, M. A., Barceló, A., Amaya, I., Medina, M. I., Alonso, F. J., Milrad De Forchetti, S., Tigier, H., and Valpuesta, V. 2000. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 122:1119–1128.

    Article  PubMed  CAS  Google Scholar 

  • Reigosa, M. J., Souto, X. C., and González, L. 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul. 28:83–88.

    Article  CAS  Google Scholar 

  • Rodriguez-Conception, M., Gòmez, M. D., and Beltran, J. P. 1995. Repression of the pea lipoxygenase gene lox g is associated with carpel development. Plant Mol. Biol. 27:887–899.

    Article  Google Scholar 

  • Romero-Romero, T., Anaya, A. L., and Cruz-Ortega, R. 2002. Screening for effects of phytochemical variability on cytoplasmic protein synthesis pattern of crop plants. J. Chem. Ecol. 28:617–629.

    Article  PubMed  CAS  Google Scholar 

  • Rudrappa, T., Bonsall, J., Gallagher, J. L., Seliskar, D. M., and Bais, H. P. 2007. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J. Chem. Ecol. 33:1898–1918.

    Article  PubMed  CAS  Google Scholar 

  • Sert, M. A., Ferraresi, M. L. L., Bernardelli, Y. R., Kelmer-Bracht, A. M., Bracht, A., and Ihiii-Iwamoto, E. L. 1998. Effects of ferulic acid on L-malate oxidation in isolated soybean mitochondria. Biol. Plantarum. 40:345–350.

    Article  Google Scholar 

  • Siedow, J. N., and Girvin, M. E. 1980. Alternative respiratory pathway. Plant Physiol. 65:669–674.

    Article  PubMed  CAS  Google Scholar 

  • Siedow, J. N. and Moore, A. L. 1991. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitocochondria. Biochim. Biophys. Acta 1059:121–140.

    Article  PubMed  Google Scholar 

  • Singh, H. P., Batish, D. R., Kaur, S., Arora, K., and Kohli, R. K. 2006. Alfa-pinene inhibits growth and induces oxidative stress in roots. Ann. Bot. 98:1261–1269.

    Article  PubMed  CAS  Google Scholar 

  • Smith, I. K. 1985. Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiol. 79:1044–1047.

    Article  PubMed  CAS  Google Scholar 

  • Staniek, K., and Nohl, H. 2000. Are mitochondria a permanent source of reactive oxygen species? Biochim. Biophys. Acta. 1460:268–275.

    Article  PubMed  CAS  Google Scholar 

  • Stoller, E. W., and Weber, E. J. 1970. Lipid constituents of some common weed seeds. J. Agr. Food Chem. 18:361–363.

    Article  CAS  Google Scholar 

  • Takahashi, L. T., Sert, M. A., Kelmer-Bracht, A. M., Bracht, A., and Ishii-Iwamoto, E. L. 1998. Effects of rutin and quercetin on mitochondrial metabolism and on ATP levels in germination tissues of Glycine max. Plant Physiol. Biochem. 36:495–501.

    Article  CAS  Google Scholar 

  • Thaler, J. S. 1999. Induced resistance in agricultural crops: effects of jasmonic acid on herbivory and yield in tomato plants. Envirom. Entomol. 28:30–37.

    CAS  Google Scholar 

  • Tranbarger, T. J., Franceschi, V. R., Hildebrand, D. F., and Grimes, H. D. 1991. The soybean 94-kilodalton vegetative storage protein is a lipoxygenase that is localized in paraveinal mesophyll cell vacuoles. Plant Cell 3:973–987.

    Article  PubMed  CAS  Google Scholar 

  • Weir, T. L., Sang-Wood, P., and Vivanco, J. M. 2004. Biochemical and physiological mechanism mediated by allelochemicals. Curr. Opin. Plant Biol. 7:472–479.

    Article  PubMed  CAS  Google Scholar 

  • Wojtyla, L., Garnczarska, M., Zalewski, T., Bednarski, W., Ratajczak, L., and Jurga, S. 2006. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. J. Plant Physiol. 163:1207–1220.

    Article  PubMed  CAS  Google Scholar 

  • Vaughn, S. F., and Spencer, G. F. 1993. Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci. 41:114–119.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Fundação Araucária do Estado do Paraná and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Érica Marusa Pergo holds a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emy Luiza Ishii-Iwamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pergo, É.M., Ishii-Iwamoto, E.L. Changes in Energy Metabolism and Antioxidant Defense Systems During Seed Germination of the Weed Species Ipomoea triloba L. and the Responses to Allelochemicals. J Chem Ecol 37, 500–513 (2011). https://doi.org/10.1007/s10886-011-9945-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9945-0

Key Words

Navigation