Skip to main content
Log in

Morphology Controlled Synthesis of Zinc Oxide Nanostructures Through Millettia pinnata (MP) Leaf Extract as Capping Agent and its Photocatalytic Degradation Efficiency of a Textile Dye

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present work reports low cost, rapid synthesis of ZnO nanostructures capped with Millettia pinnata leaf extract which produced rods, pyramids, cones and flower like morphology. Microwave irradiation method drastically reduced the reaction time. Three samples  were prepared with different volumes of the extract and a control experiment was performed where no extract was used. The quantity of the extract significantly influences the size and morphology. Characterization done by X-ray diffraction established the purity and crystalline nature of the samples. The composition was further confirmed by EDS which shows the exclusive presence of elements zinc and oxygen. UV–visible spectroscopy shows absorption wavelength for the as synthesized ZnO semiconductor samples between 351 and 365 nm. FTIR spectra show a band in the region of 500–550 cm−1 corresponding to Zn–Ostr. FESEM images show rodlike morphology for uncapped ZnO which on annealing at 400 °C produced an assembled flower like morphology. The morphology varies from pyramid, to cone, to flower like as the volume of extract increases from 2.5 to 10 mL. Methylene blue was the target textile dye and its degradation was tested under UV light.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang (2001). Science 292, 1897.

    Article  PubMed  CAS  Google Scholar 

  2. Z. Deng, M. Chen, A. Gu, and L. Wu (2008). J. Phys. Chem. B 112, 16.

    Article  PubMed  CAS  Google Scholar 

  3. B. Archana, K. Manjunath, G. Nagaraju, K. B. ChandraSekhar, and N. Kottam (2017). Int. J. Hydrogen Energy 42, 5125.

    Article  CAS  Google Scholar 

  4. S. B. A. Hamid, S. J. Teh, and C. W. Lai (2017). Catalysts 7, 93.

    Article  CAS  Google Scholar 

  5. J. Song, J. Zhou, and Z. L. Wang (2006). Nano Lett. 6, 1656.

    Article  PubMed  CAS  Google Scholar 

  6. Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, and D. M. Bagnall (2003). Appl. Phys. Lett. 83, 4719.

    Article  CAS  Google Scholar 

  7. S. M. H. Akhter, Z. Mahmood, S. Ahmad, and F. Mohammad (2018). BioNanoScience. 8, 811.

    Article  Google Scholar 

  8. K. Kairyte, A. Kadys, and Z. Luksiene (2013). J. Photochem. Photobiol B: Biol 128, 78.

    Article  CAS  Google Scholar 

  9. J. Guo and C. Peng (2015). Ceram. Int. 41, 2180.

    Article  CAS  Google Scholar 

  10. X. Zhao and L. Qi (2012). Nanotechnology 23, 235604.

    Article  PubMed  CAS  Google Scholar 

  11. L. Upadhyaya, J. Singh, V. Agarwal, A. C. Pandey, S. P. Verma, P. Das, and R. P. Tewari (2014). J. Polym. Res 21, 550.

    Article  CAS  Google Scholar 

  12. C. L. Kuo, C. L. Wang, H. H. Ko, W. S. Hwang, K. Chang, W. L. Li, H. H. Huang, Y. H. Chang, and M. C. Wang (2010). Ceram. Int. 36, 693.

    Article  CAS  Google Scholar 

  13. P. J. Lu, S. C. Huang, Y. P. Chen, L. C. Chiueh, and D. Y. C. Shih (2015). J. Food Drug Anal 23, 587.

    Article  PubMed  CAS  Google Scholar 

  14. Z. Y. Zhang and H. M. Xiong (2015). Materials 8, 3101.

    Article  PubMed Central  CAS  Google Scholar 

  15. G. C. J. Swarnavalli, S. Dinakaran, S. Krishnaveni, and G. M. Bhalerao (2019). Mater. Sci. Eng. B. 247, 114376.

    Article  CAS  Google Scholar 

  16. F. Davar, A. Majedi, and A. Mirzaei (2015). J. Am. Ceram. Soc. 98, 1739.

    Article  CAS  Google Scholar 

  17. A. Kolodziejczak-Radzimska and T. Jesionowski (2014). Materials 7, 2833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17.

    Article  PubMed  CAS  Google Scholar 

  19. N. Zikalala, K. Matshetshe, S. Parani, and O. S. Oluwafemi (2018). Nano-Struct. Nano-Objects. 16, 288.

    Article  CAS  Google Scholar 

  20. L. Xu, Y. L. Hu, C. Pelligra, C. H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, and S. L. Suib (2009). Chem. Mater. 21, 2875.

    Article  CAS  Google Scholar 

  21. C. Anupama, A. Kaphle, Udayabhanu, and G. Nagaraju (2018). J. Mater. Sci. Mater. Electr. 29, 4238.

    Article  CAS  Google Scholar 

  22. M. M. Khan, N. H. Saadah, M. E. Khan, M. H. Harunsani, A. L. Tan, and M. H. Cho (2019). BioNanoScience 9, 334.

    Article  Google Scholar 

  23. T. T. Liu, M. H. Wang, H. Su, X. Chen, C. Chen, and R. C. Zhang (2015). J. Electr. Mater. 44, 3430.

    Article  CAS  Google Scholar 

  24. J. Duraimurugan, G. S. Kumar, P. Maadeswaran, S. Shanavas, P. M. Anbarasan, and V. Vasudevan (2019). J. Mater. Sci: Mater. Electr 30, 1927.

    CAS  Google Scholar 

  25. S. Narendhran and R. Sivaraj (2016). Bull. Mater. Sci. 39, 1.

    Article  CAS  Google Scholar 

  26. G. Khara, H. Padalia, P. Moteriya, and S. Chanda (2018). Arab. J. Sci. Eng 43, 3393.

    Article  CAS  Google Scholar 

  27. E. Shayegan, M. Mina, S. Ali, R. Saeid, and T. Fardood (2018). J. Mater. Sci: Mater. Electr 29, 1333.

    Google Scholar 

  28. A. Venkateasan, R. Prabakaran, and V. Sujatha (2017). Nanotechnol. Environ. Eng 2, 1.

    Article  CAS  Google Scholar 

  29. S. Kumar and C. Lalit (2017). Appl. Nanosci. 7, 501.

    Article  CAS  Google Scholar 

  30. T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, and A. Varma (2015). Mater. Sci. Semicond. Process. 32, 55.

    Article  CAS  Google Scholar 

  31. P. Thatoi, R. G. Kerry, S. Gouda, G. Das, K. Pramanik, H. Thatoi, and J. K. Patra (2016). J. Photochem. Photobiol. B: Biol 163, 311.

    Article  CAS  Google Scholar 

  32. D. Sharma, M. I. Sabela, S. Kanchi, P. S. Mdluli, G. Singh, T. A. Stenström, and K. Bisetty (2016). J. Photochem. Photobiol. B: Biol. 162, 199.

    Article  CAS  Google Scholar 

  33. M. Sundrarajan, S. Ambika, and K. Bharathi (2015). Adv. Powder Technology 26, 1294.

    Article  CAS  Google Scholar 

  34. M. S. A. Marzouk, M. T. Ibrahim, O. R. El-Gindi, and M. S. A. Bakr (2008). Zeitschrift Für Naturforschung C 63, 1.

    Article  CAS  Google Scholar 

  35. R. Gandhidasan, S. Neelakantan, P. V. Raman, and S. Devaraj (1986). Phytochemistry 26, 281.

    Article  CAS  Google Scholar 

  36. S. S. Momeni, M. Nasrollahzadeh, and A. Rustaiyan (2016). J. Coll. Interface Sci. 472, 173.

    Article  CAS  Google Scholar 

  37. J. Fowsiya, G. Madhumitha, N. A. Al-Dhabi, and M. V. Arasu (2016). J. Photochem. Photobiol. B: Biol. 162, 395.

    Article  CAS  Google Scholar 

  38. M. Ramesh, M. Anbuvannan, and G. Viruthagiri (2015). Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 136, 864.

    Article  CAS  Google Scholar 

  39. R. B. Kale, Y. J. Hsu, Y. F. Lin, and S. Y. Lu (2014). Superlattices Microstruct 69, 239.

    Article  CAS  Google Scholar 

  40. L. Vayssieres, K. Keis, A. Hagfeldt, and S. Lindquist (2001). Chem. Mater. 13, 4395.

    Article  CAS  Google Scholar 

  41. H. R. Madan, S. C. Sharma, Udayabhanu, D. Suresh, Y. S. Vidya, H. Nagabhushana, H. Rajanaik, K. S. Anantharaju, S. C. Prashantha, and P. Sadananda Maiya (2016). Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 152, 404.

    Article  CAS  Google Scholar 

  42. I. John Peter, E. Praveen, G. Vignesh, and P. Nithiananthi (2017). Mater. Res. Bull. 4, 124003.

    Google Scholar 

  43. X. Wang, Q. Zhang, Q. Wan, G. Dai, C. Zhou, and B. Zou (2011). J. Phys. Chem C. 115, 2769.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the facilities provided by Department of Nuclear Physics, University of Madras, Guindy Campus Chennai, Tamil Nadu, India.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dinakaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cynthia Jemima Swarnavalli, G., Dinakaran, S. Morphology Controlled Synthesis of Zinc Oxide Nanostructures Through Millettia pinnata (MP) Leaf Extract as Capping Agent and its Photocatalytic Degradation Efficiency of a Textile Dye. J Clust Sci 32, 1585–1592 (2021). https://doi.org/10.1007/s10876-020-01911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01911-7

Keywords

Navigation