Skip to main content
Log in

Effect of Magnesium Substitution on Structural, Magnetic and Biological Activity of Co(1-x)Mg(x)Fe2O4 Nano-colloids

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Citrate coated magnesium substituted cobalt ferrite nanoparticles Co(1-x)Mg(x)Fe2O4 (where, x = 0.0, 0.25, 0.50, 0.75, 1.0) were prepared by sonochemical method. X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy and Fourier transform infrared spectroscopy results confirmed the formation of spinel structures for all concentration values of substitution (x = 0.0–1.0). Furthermore, saturation magnetization was decreased upon increasing magnesium content. Hemolysis assay in vitro confirmed safety of nanoparticles for systemic administration and was non-significant upon increasing magnesium content when compared to untreated control. In vitro cytotoxicity screening against HepG2 cells revealed that cytotoxicity had an inverse relation with increasing magnesium concentration. Highly significant result was observed in the presence of x = 0.25 with percentage viability of 33.5 ± 2.28%. Similarly, antibacterial studies showed highly significant bacterial inhibition against pathogenic strains in the presence of x = 0.25. The results reveal the optimal value of magnesium co-doped functional magnetic materials and their application in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Available

References

  1. S. Spirou, M. Basini, A. Lascialfari, C. Sangregorio, and C. Innocenti (2018). Nanomaterials 8, 401.

    PubMed Central  Google Scholar 

  2. M. Ansari, A. Bigham, and H. A. Ahangar (2019). Mater Sci Eng C 105, 110084.

    CAS  Google Scholar 

  3. Y.-T. Chen, A. G. Kolhatkar, O. Zenasni, S. Xu, and T. R. Lee (2017). Sensors 17, 2300.

    PubMed Central  Google Scholar 

  4. A. Sha, R. Hassan, A. Alharbi, T. Alomavri, and H. Alamri (2017). Int. J. Adv. Tech 8, 196.

    Google Scholar 

  5. W. H. De Jong and P. J. Borm (2008). Int J Nanomedicine 3, 133.

    PubMed  PubMed Central  Google Scholar 

  6. Amiri, M.; Salavati-Niasari, M.; Akbari, A. Adv. Colloid Interface Sci, (2019).

  7. S. Y. Srinivasan, K. M. Paknikar, D. Bodas, and V. Gajbhiye (2018). Nanomedicine 13, 1221–1238.

    PubMed  CAS  Google Scholar 

  8. L. Horev-Azaria, G. Baldi, D. Beno, D. Bonacchi, U. Golla-Schindler, J. C. Kirkpatrick, S. Kolle, R. Landsiedel, O. Maimon, and P. N. Marche (2013). Part Fibre Toxicol 10, 32.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. I. Sharifi, H. Shokrollahi, and S. Amiri (2012). J. Magn. Magn. Mater. 324, 903–915.

    CAS  Google Scholar 

  10. Y. Sahoo, A. Goodarzi, M. T. Swihart, T. Y. Ohulchanskyy, N. Kaur, E. P. Furlani, and P. N. Prasad (2005). J. Phys. Chem. B 109, 3879–3885.

    PubMed  CAS  Google Scholar 

  11. K. Maaz, A. Mumtaz, S. Hasanain, and A. Ceylan (2007). J. Magn. Magn. Mater. 308, 289–295.

    CAS  Google Scholar 

  12. V. Pašukonienė, A. Mlynska, S. Steponkienė, V. Poderys, M. Matulionytė, V. Karabanovas, U. Statkutė, R. Purvinienė, J. A. Kraśko, and A. Jagminas (2014). Medicina 50, 237–244.

    PubMed  Google Scholar 

  13. R. P. Sharma, S. D. Raut, R. M. Mulani, A. S. Kadam, and R. S. Mane (2019). Int. Nano Lett. 9, 141–147.

    CAS  Google Scholar 

  14. Sanpo, N.;Wen, C.;Berndt, C. C.; Wang, J. Microbial pathogens and strategies for combating them: science, technology and education. (Formatex Research Centre, 2013), 239-250.

  15. F. Ahmad, X. Liu, Y. Zhou, and H. Yao (2015). Aquat. Toxicol. 166, 21–28.

    PubMed  CAS  Google Scholar 

  16. Finetti, F.;Terzuoli, E.;Donnini, S.;Uva, M.;Ziche, M.; Morbidelli, L. PloS one, 11, (2016).

  17. Abudayyak, M.;ALTINÇEKİÇ GÜRKAYNAK, T.; Özhan, G. Turk J Pharm Sci, 14 (2017).

  18. J. Chandradass, A. H. Jadhav, K. H. Kim, and H. Kim (2012). J. Alloys Compd. 517, 164–169.

    CAS  Google Scholar 

  19. S. Anjum, M. Pervaiz, A. Rashid, and R. Zia (2019). J. Electron. Mater 48, 806–816.

    CAS  Google Scholar 

  20. C. Ehi-Eromosele, J. Olugbuyirozz, O. Taiwo, O. Bamgboye, and C. Ango (2018). B Chem Soc Ethiopia 32, 451–458.

    CAS  Google Scholar 

  21. Kanagesan, S.;Hashim, M.;Tamilselvan, S.;Alitheen, N.;Ismail, I.; Bahmanrokh, G. J. Nanomater., 165 (2013).

  22. Matsuda, S.;Kanazu, M.;Nakanishi, T.; Osaka, T. J. Electrochem. Soc., 1569-1569 (2016).

  23. J. Sun, S. Wang, D. Zhao, F. H. Hun, L. Weng, and H. Liu (2011). Cell biol toxicol 27, 333–342.

    PubMed  Google Scholar 

  24. K. Krishnamoorthy, J. Y. Moon, H. B. Hyun, S. K. Cho, and S.-J. Kim (2012). J. Mater. Chem. 22, 24610–24617.

    CAS  Google Scholar 

  25. K. Krishnamoorthy, G. Manivannan, S. J. Kim, K. Jeyasubramanian, and M. Premanathan (2012). J Nanopart Res 14, 1063.

    Google Scholar 

  26. A. Lagashetty, A. Pattar, and S. K. Ganiger (2019). Heliyon 5, e01760.

    PubMed  PubMed Central  Google Scholar 

  27. W. Wu, Q. He, and C. Jiang (2008). Nanoscale Res. Lett. 3, 397.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. B. Issa, I. M. Obaidat, B. A. Albiss, and Y. Haik (2013). Int. J. Mol. Sci. 14, 21266–21305.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. S. Mourdikoudis and L. M. Liz-Marzan (2013). Chem. Mater. 25, 1465–1476.

    CAS  Google Scholar 

  30. KAHIL, H.;El_Sayed, H.;Elsayed, E.;Sallam, A.;TALAAT, M.; Sattar, A. Rom. J. Biophys, 25, 209-224 (2015).

  31. T. Bala, C. R. Sankar, M. Baidakova, V. Osipov, T. Enoki, P. Joy, B. Prasad, and M. Sastry (2005). Langmuir 21, 10638–10643.

    PubMed  CAS  Google Scholar 

  32. S. Gowreesan and A. Ruban Kumar (2018). Int. J. Nanosci. 17, 1760012.

    CAS  Google Scholar 

  33. Q. Lin, Y. He, J. Lin, F. Yang, L. Wang, and J. Dong (2019). J. Magn. Magn. Mater. 469, 89–94.

    CAS  Google Scholar 

  34. S. Arooj, S. Nazir, A. Nadhman, N. Ahmad, B. Muhammad, I. Ahmad, K. Mazhar, R. Abbasi, and J. Beilstein (2015). Nanotechnol. 6, 570–582.

    CAS  Google Scholar 

  35. K. Shahzad, S. Mushtaq, S. Akhtar, K. Yaseen, F. Amin, and Z. Ali (2019). Mater. Res. Express 6, 055012.

    CAS  Google Scholar 

  36. Evans, B. C.;Nelson, C. E.;Shann, S. Y.;Beavers, K. R.;Kim, A. J.;Li, H.;Nelson, H. M.;Giorgio, T. D.; Duvall, C. L. JoVE, e50166 (2013).

  37. Z. Ali, R. Abbasi, A. Khan, J. Arshad, M. Atif, N. Ahmad, and W. Khalid (2018). Mater. Res. Express 5, 056103.

    Google Scholar 

  38. I. Nlebedim, R. L. Hadimani, R. Prozorov, and D. C. Jiles (2013). J. Appl. Phys. 113, 17A928.

    Google Scholar 

  39. V. Vinayak, P. P. Khirade, S. D. Birajdar, R. Alange, and K. Jadhav (2015). J Supercond Nov Magn 28, 3351–3356.

    CAS  Google Scholar 

  40. A. Gadkari, T. Shinde, and P. Vasambekar (2009). Mater. Chem. Phys. 114, 505–510.

    CAS  Google Scholar 

  41. M. Ahmed and A. El-Khawlani (2009). J. Magn. Magn. Mater. 321, 1959–1963.

    CAS  Google Scholar 

  42. Galagali, S. L.;Patil, R. A.;Adaki, R. B.;Hiremath, C. S.;Mathad, S. N.; Pujar, R. B. Sci. Sinter., 50 (2018).

  43. E. Rezlescu, L. Sachelarie, P. Popa, and N. Rezlescu (2000). IEEE T MAGN 36, 3962–3967.

    CAS  Google Scholar 

  44. V. Brabers (1969). Phys. Status Solidi B 33, 563–572.

    CAS  Google Scholar 

  45. K. Modi, M. Chhantbar, and H. Joshi (2006). Ceram. Int. 32, 111–114.

    CAS  Google Scholar 

  46. M. P. Reddy, X. Zhou, A. Yann, S. Du, Q. Huang, and A. M. A. Mohamed (2015). Superlattice Microst. 81, 233–242.

    Google Scholar 

  47. Y. Na, S. Yang, and S. Lee (2014). Desalination 347, 34–42.

    CAS  Google Scholar 

  48. J. Madejova (2003). Vib. Spectrosc. 31, 1–10.

    CAS  Google Scholar 

  49. P. Aghav, V. N. Dhage, M. L. Mane, D. Shengule, R. Dorik, and K. Jadhav (2011). Physica B: Condensed Matter 406, 4350–4354.

    CAS  Google Scholar 

  50. A. Quarta, A. Curcio, H. Kakwere, and T. Pellegrino (2012). Nanoscale 4, 3319–3334.

    PubMed  CAS  Google Scholar 

  51. B. N. Brandhagen, C. R. Tieszen, T. M. Ulmer, M. S. Tracy, A. A. Goyeneche, and C. M. Telleria (2013). BMC cancer 13, 35.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. S. Ge, G. Wang, Y. Shen, Q. Zhang, D. Jia, H. Wang, Q. Dong, and T. Yin (2011). IET nanobiotechnol 5, 36–40.

    PubMed  CAS  Google Scholar 

  53. M. S. Darwish, H. Kim, H. Lee, C. Ryu, J. Y. Lee, and J. Yoon (2019). Nanomaterials 9, 1176.

    PubMed Central  CAS  Google Scholar 

  54. L. Guerrini, R. A. Alvarez-Puebla, and N. Pazos-Perez (2018). Materials 11, 1154.

    PubMed Central  Google Scholar 

  55. M. Wu, H. Guo, L. Liu, Y. Liu, and L. Xie (2019). Int J Nanomedicine 14, 4247.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. C. Freese, C. Uboldi, M. I. Gibson, R. E. Unger, B. B. Weksler, I. A. Romero, P.-O. Couraud, and C. J. Kirkpatrick (2012). Part fibre toxicol. 9, 23.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. S. Behzadi, V. Serpooshan, W. Tao, M. A. Hamaly, M. Y. Alkawareek, E. C. Dreaden, D. Brown, A. M. Alkilany, O. C. Farokhzad, and M. Mahmoudi (2017). Chem. Soc. Rev. 46, 4218–4244.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. VT Nair, D.;Venkitanarayanan, K.; Kollanoor Johny, A. Foods, 7, 167 (2018).

  59. H. Yang, J. Cheng, L. Hu, Y. Zhu, and J. Li (2012). Afr. J. Microbiol. Res. 6, 4427–4437.

    Google Scholar 

  60. T. J. Foster (2017). FEMS Microbiol Reviews 41, 430–449.

    CAS  Google Scholar 

  61. N. Sanpo, C. C. Berndt, C. Wen, and J. Wang (2013). Acta Biomater. 9, 5830–5837.

    PubMed  CAS  Google Scholar 

  62. P. Antoniea, C. Dorina, N. Claudia, and T. F. Mihai (2012). Afr. J. Microbiol. Res. 6, 1054–1060.

    Google Scholar 

  63. R. Žalnėravičius, A. Paškevičius, M. Kurtinaitiene, and A. Jagminas (2016). J Nanopart Res 18, 300.

    Google Scholar 

  64. A. S. Hathout, A. Aljawish, B. A. Sabry, A. A. El-Nekeety, M. H. Roby, N. M. Deraz, S. E. Aly, and M. A. J. Abdel-Wahhab (2017). Appl. Pharm. Sci. 7, 086–092.

    CAS  Google Scholar 

  65. Majidi, S.;Zeinali Sehrig, F.;Farkhani, S. M.;Soleymani Goloujeh, M.; Akbarzadeh, A. Artif Cells Nanomed Biotechnol, 44, 722-734 (2016).

  66. Y. N. Slavin, J. Asnis, U. O. Häfeli, and H. Bach (2017). J. Nanobiotechnology 15, 65.

    PubMed  PubMed Central  Google Scholar 

  67. D. E. Newbury and N. W. Ritchie (2015). Journal of materials science 50, (2), 493–518.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Sajjad Ur Rehman for VSM measurements and Dr. Nafees Ahmad for helpful discussions. This study was supported by Higher Education Commission of Pakistan Grant No. 9944/Federal/NRPU/R&D/HEC/2017.

Funding

Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulqurnain Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, K., Mushtaq, S., Shah, S. et al. Effect of Magnesium Substitution on Structural, Magnetic and Biological Activity of Co(1-x)Mg(x)Fe2O4 Nano-colloids. J Clust Sci 32, 1003–1014 (2021). https://doi.org/10.1007/s10876-020-01862-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01862-z

Keywords

Navigation