Skip to main content
Log in

Studies on the Antibacterial and Catalytic Activities of Silver Nanoparticles Synthesized from Cyperus rotundus L.

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present report demonstrates a simple and green biosynthesis of silver nanoparticles (AgNps) using the extract of the rhizome of Cyperus rotundus L., a native plant having some medicinal importance. The antibacterial activity of AgNps on Escherichia coli, a Gram-negative bacterium as well as the catalytic activity of AgNps for degradation of azo dyes was investigated. The inhibition of the cell growth of Escherichia coli was found to occur in 18 h corresponding to AgNps concentration of 7.2 μg mL−1, considered as the minimum inhibitory concentration. The 99.9% cell killing was achieved in 18 h on treatment with AgNps at a concentration of 7.8 μg mL−1, considered as minimum bactericidal concentration. The Escherichia coli cell filamentation was observed when treated with AgNps. The bactericidal activity of Escherichia coli is thought to be due to the cell death via AgNps concentration dependent reactive oxygen species production. The catalytic activity of AgNps for degradation of azo dyes (methyl orange, methyl red and congo red) in presence of sodium borohydride was also investigated. Almost 95% dye degradation occurred in few minutes using AgNps and nil without AgNps. The degradation pathway follows pseudo first order kinetics. The activation energy for dye degradation was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. B. Narayanan and N. Sakthivel (2010). Adv. Colloid Interface Sci. 156, 1–13.

    CAS  PubMed  Google Scholar 

  2. K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, and Y. Yobiko (2001). Langmuir 17, 7717–7720.

    CAS  Google Scholar 

  3. S. Ankanna, T. N. V. K. V. Prasad, E. K. Elumalai, and N. Savithramma (2010). Dig. J. Nanomater. Biostruct. 5, (2), 369–372.

    Google Scholar 

  4. A. Lateef, I. A. Adelere, E. B. Gueguim-Kana, T. B. Asafa, and L. S. Beukes (2014). Int. Nano Lett. 5, (1), 29–35.

    Google Scholar 

  5. A. Lateef and A. O. Adeeyo (2015). Notulae Scientia Biologicae 7, (4), 405–411.

    CAS  Google Scholar 

  6. A. Lateef, S. A. Ojo, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, E. B. Gueguim-Kana, and L. S. Beukes (2015). Appl. Nanosci. 6, (6), 863–874.

    Google Scholar 

  7. A. Lateef, S. A. Ojo, and J. A. Elegbede (2016). Nanotechnol. Rev. 5, (6), 601–622.

    CAS  Google Scholar 

  8. I. A. Adelere and A. Lateef (2016). Nanotechnol. Rev. 5, (6), 567–587.

    CAS  Google Scholar 

  9. R. Mariselvam, A. J. A. Ranjitsingh, A. U. R. Nanthini, K. Kalirajan, C. Padmalatha, and P. M. Selvakumar (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 129, 537–541.

    CAS  PubMed  Google Scholar 

  10. Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen, and C. P. Yu (2014). Colloids Surf. A Physicochem. Eng. Asp. 444, 226–231.

    CAS  Google Scholar 

  11. R. W. Raut, V. D. Mendhulkar, and S. B. Kashid (2014). J. Photochem. Photobiol. B 132, 45–55.

    CAS  PubMed  Google Scholar 

  12. S. M. Roopan, G. Rohit, A. A. Madhumitha, C. Rahuman, A. Bharathi Kamaraj, and T. V. Surendra (2013). Ind. Crop. Prod. 43, 631–635.

    CAS  Google Scholar 

  13. D. A. Kumar, V. Palanichamy, and S. M. Roopan (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 127, 168–171.

    CAS  PubMed  Google Scholar 

  14. P. R. R. Sre, M. Reka, R. Poovazhagi, M. A. Kumar, and K. Murugesan (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 1137–1144.

    Google Scholar 

  15. P. P. N. V. Kumara, S. V. N. Pammib, P. Kolluc, K. V. V. Satyanarayanad, and U. Shameem (2014). Ind. Crop. Prod. 52, 562–566.

    Google Scholar 

  16. A. Rawania, A. Ghoshb, and G. Chandra (2013). Acta Tropica 128, 613–622.

    Google Scholar 

  17. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry (2006). Biotechnol. Prog. 22, 577–583.

    CAS  PubMed  Google Scholar 

  18. G. Rajakumar and A. A. Rahuman (2011). Acta Tropica 118, 196–203.

    CAS  PubMed  Google Scholar 

  19. J. Banerjee and R. T. Narendhirakannan (2011). Dig. J. Nanomater. Biostruct. 6, (3), 961–968.

    Google Scholar 

  20. M. S. Abdel-Aziz, M. S. Shaheen, A. A. El-Nekeety, and M. A. Abdel-Wahhab (2014). J. Saudi Chem. Soc. 18, 356–363.

    Google Scholar 

  21. T. J. I. Edison and M. G. Sethuraman (2012). Process Biochem. 47, 1351–1357.

    CAS  Google Scholar 

  22. A. Panacek, M. Kolar, R. Vecerova, R. Prucek, J. Soukupova, V. Krystof, P. Hamal, R. Zboril, and L. Kvıtek (2009). Biomaterials 30, 6333–6340.

    CAS  PubMed  Google Scholar 

  23. B. Ramalingam, T. Parandhaman, and S. K. Das (2016). ACS Appl. Mater. Interfaces 8, 4963–4976.

    CAS  PubMed  Google Scholar 

  24. A. Lateef, M. A. Akande, S. A. Ojo, B. I. Folarin, E. B. Gueguim-Kana, and L. S. Beukes (2016). 3Biotech 6, (140), 1–10.

    Google Scholar 

  25. J. A. Elegbede, A. Lateef, M. A. Azeez, T. B. Asafa, T. A. Yekeen, I. C. Oladipo, E. A. Adebayo, L. S. Beukes, and E. B. Gueguim-Kana (2018). IET Nanobiotechnol. 12, (6), 857–863.

    PubMed  PubMed Central  Google Scholar 

  26. R. Bhattacharya and P. Mukherjee (2008). Adv. Drug Deliv. Rev. 60, 1289–1306.

    CAS  PubMed  Google Scholar 

  27. M. K. Zahran, H. B. Ahmed, and M. H. El-Rafie (2014). Carbohydr. Polym. 111, 971–978.

    CAS  PubMed  Google Scholar 

  28. Y. Shao, C. Wu, T. Wu, S. Chen, T. Ding, X. Ye, and Y. Hu (2018). Int. J. Biol. Macromol. 111, 1281–1292.

    CAS  PubMed  Google Scholar 

  29. B. Halliwell, J. M. C. Gutteridge, and C. E. Cross (1992). Transl. Res. 119, (6), 598–620.

    CAS  Google Scholar 

  30. S. K. Sharma and A. P. Singh (2011). Der. Pharm. Lett. 3, (3), 427–431.

    Google Scholar 

  31. S. Kilani, J. Ledauphin, I. Bouhlel, M. B. Sghaier, J. Boubaker, I. Skandrani, R. Mosrati, K. Ghedira, D. Barillier, and L. Chekir-Ghedira (2008). Chem. Biodivers. 5, 729–742.

    CAS  PubMed  Google Scholar 

  32. A. G. Jagtap, S. S. Shirke, and A. S. Phadke (2004). J. Ethnopharmacol. 90, 195–204.

    CAS  PubMed  Google Scholar 

  33. M. C. T. Duarte, G. M. Figueira, A. Sartoratto, V. L. G. Rehder, and C. Delarmelina (2005). J. Ethnopharmacol. 97, 305–311.

    PubMed  Google Scholar 

  34. Y. Li, J. Niu, E. Shang, and J. Crittenden (2014). Environ. Sci. Technol. 48, 4946–4953.

    CAS  PubMed  Google Scholar 

  35. Y. Li, W. Zhang, J. Niu, and Y. Chen (2014). Environ. Sci. Technol. 47, 10293–10301.

    Google Scholar 

  36. J. P. Shi, C. Y. Ma, B. Xu, H. W. Zhang, and C. P. Yu (2012). Environ. Toxicol. Chem. 31, 1630–1638.

    CAS  PubMed  Google Scholar 

  37. W. Zhang, Y. Li, J. Niu, and Y. Chen (2013). Langmuir 29, 4647–4653.

    CAS  PubMed  Google Scholar 

  38. S. Denrah and M. Sarkar (2019). Chem. Eng. Res. Des. 144, 494–504.

    CAS  Google Scholar 

  39. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji (2008). Acta Biomater. 4, 707–716.

    CAS  PubMed  Google Scholar 

  40. K. Y. Yoon, J. H. Byeon, J. H. Park, and J. Hwang (2007). Sci. Total. Environ. 373, 572–575.

    CAS  PubMed  Google Scholar 

  41. J. May, K. Shannon, and A. King (1998). J. Antimicrob. Chemo. 42, 189–197.

    CAS  Google Scholar 

  42. A. K. Chatterjee, R. K. Sarkar, A. P. Chattopadyay, P. Aich, R. Chakraborty, and T. Basu (2012). Nanotechnology 23, (085103), 11.

    Google Scholar 

  43. P. Gong, H. Li, X. He, K. Wang, J. Hu, W. Tan, S. Zhang, and X. Yang (2007). Nanotechnology 18, 7.

    Google Scholar 

  44. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci. 275, 496–502.

    CAS  PubMed  Google Scholar 

  45. P. Mulvaney (1996). Langmuir 12, 788–800.

    CAS  Google Scholar 

  46. K. C. Bhainsa and S. F. DSouza (2006). Colloids Surf. B Biointerface. 47, 160–164.

    CAS  Google Scholar 

  47. L. Shang and S. Dong (2008). Chem. Commun. 9, 1088–1090.

    Google Scholar 

  48. M. Goudarzi, N. Mir, M. Mousavi-Kamazani, S. Bagheri, and M. Salavati-Niasari (2016). Sci. Rep. 6, 32539.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. M. Eid and E. Araby (2013). Appl. Biochem. Biotechnol. 171, 469–487.

    CAS  PubMed  Google Scholar 

  50. S. Raja, V. Ramesh, and V. Thivaharan (2015). J. Ind. Eng. Chem. 2477, 1–8.

    Google Scholar 

  51. K. Aslan, J. R. Lakowicz, E. Mateeva, J. Zhang, R. Badugu, and J. Huang (2004). J. Fluoresc. 14, 425–441.

    PubMed  PubMed Central  Google Scholar 

  52. F. Gu, C. Hu, Z. Tai, C. Yao, J. Tian, L. Zhang, Q. Xia, C. Gong, Y. Gao, and S. Gao (2016). Sci. Rep. 6, 36281.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. S. K. Das, M. M. R. Khan, A. K. Guha, A. R. Das, and A. B. Mandal (2012). Bioresour. Technol. 124, 495–499.

    CAS  PubMed  Google Scholar 

  54. G. A. Pankey and L. D. Sabath (2004). Clin. Infect. Dis. 38, (6), 864–870.

    CAS  PubMed  Google Scholar 

  55. S. S. Justice, D. A. Hunstad, L. Cegelski, and S. J. Hultgren (2008). Nat. Rev. Microbiol. 6, 162–168.

    CAS  PubMed  Google Scholar 

  56. H. Bao, X. Yu, C. Xu, X. Li, Z. Li, D. Wei, and Y. Liu (2015). PlosOne. https://doi.org/10.1371/journal.pone.0122535.

    Article  Google Scholar 

  57. M. Sathishkumar, K. Sneha, S. W. Won, C. W. Cho, S. Kim, and Y. S. Yun (2009). Colloids Surf. B Biointerfaces 73, 332–338.

    CAS  PubMed  Google Scholar 

  58. M. Sathishkumar, K. Sneha, and Y. S. Yun (2010). Bioresour. Technol. 101, 7958–7965.

    CAS  PubMed  Google Scholar 

  59. A. Saxena, R. M. Tripathi, F. Zafar, and P. Singh (2012). Mater. Lett. 67, 91–94.

    CAS  Google Scholar 

  60. H. M. M. Ibrahim (2015). J. Radiat. Res. Appl. Sci. 8, 265–275.

    Google Scholar 

  61. C. Dipankar and S. Murugan (2012). Colloids Surf. B Biointerfaces 98, 112–119.

    CAS  PubMed  Google Scholar 

  62. R. Emmanuel, S. Palanisamy, S. M. Chen, K. Chelladurai, S. Padmavathy, M. Saravanan, P. Prakash, M. A. Ali, and F. M. A. Al-Hemaid (2015). Mater. Sci. Eng. C 56, 374–379.

    CAS  Google Scholar 

  63. R. Varghese, M. A. Almalki, S. Ilavenil, J. Rebecca, and K. C. Choi (2019). Saudi J. Biol. Sci. 26, 148–154.

    CAS  PubMed  Google Scholar 

  64. Y. He, F. Wei, Z. Ma, H. Zhang, Q. Yang, B. Yao, Z. Huang, J. Li, C. Zeng, and Q. Zhang (2017). RSC Adv. 7, 39842–39851.

    CAS  Google Scholar 

  65. K. Ali, B. Ahmed, S. Dwivedi, Q. Saquib, A. A. Al-Khedhairy, and J. Musarrat (2015). PLoSOne 10, e0131178.

    Google Scholar 

  66. M. N. Gallucci, J. C. Fraire, A. P. V. F. Maillard, P. L. P.L. P´aez, I. M. A. Mart´ınez, E. V. P. Miner, E. A. Coronado, and P. R. Dalmasso (2017). Mater. Lett. 197, 98–101.

    CAS  Google Scholar 

  67. N. Muniyappan and N. S. Nagarajan (2014). Process Biochem. 49, 1054–1061.

    CAS  Google Scholar 

  68. M. Oves, M. Aslam, M. A. Rauf, S. Qayyum, H. A. Qari, M. S. Khan, M. Z. Alam, S. Tabrez, A. Pugazhendhi, and I. M. I. Ismail (2018). Mater. Sci. Eng. C 89, 429–443.

    CAS  Google Scholar 

  69. K. Muthu and S. Priya (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 179, 66–72.

    CAS  PubMed  Google Scholar 

  70. T. Nesakumar, J. I. Edison, R. Atchudan, M. G. Sethuraman, and Y. R. Lee (2016). J Photochem Photobiol B Biol. 162, 604–610.

    Google Scholar 

  71. V. K. Vidhu and D. Philip (2014). Micron 56, 54–62.

    CAS  PubMed  Google Scholar 

  72. K. Jyoti and A. Singh (2016). J. Genetic Eng. Biotechnol. 14, 311–317.

    Google Scholar 

  73. H. Kolya, P. Maiti, A. Pandey, and T. Tripathy (2015). J. Anal. Sci. Technol. 6, 33.

    Google Scholar 

  74. K. Anand, K. Kaviyarasu, S. Muniyasamy, S. M. Roopan, R. M. Gengan, and A. A. Chuturgoon (2017). J. Clust. Sci. 28, 2279–2291.

    CAS  Google Scholar 

  75. C. Saravanan, R. Rajesh, T. Kaviarasan, K. Muthukumar, D. Kavitake, and P. H. Shetty (2017). Biotechnol. Rep. 15, 33–40.

    Google Scholar 

  76. B. A. Bello, S. A. Khan, J. A. Khan, F. Q. Syed, M. B. Mirza, L. Shah, and S. B. Khan (2017). Biochem. Biophys. Res. Commun. 490, 889–894.

    CAS  PubMed  Google Scholar 

  77. N. Nagar and V. Devra (2019). Heliyon 5, e01356.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the assistance received under UGC-SAP, DST-FIST and DST-PURSE program, Govt. of India. One of the authors (SD) is thankful to UGC for providing the research fellowship. The instrumental facilities availed from Nanoscience centre, CU, is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitali Sarkar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, M., Denrah, S., Patra, M. et al. Studies on the Antibacterial and Catalytic Activities of Silver Nanoparticles Synthesized from Cyperus rotundus L.. J Clust Sci 32, 265–278 (2021). https://doi.org/10.1007/s10876-020-01785-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01785-9

Keywords

Navigation