Skip to main content
Log in

Synthesis and XRD of Novel Ni4(µ3-O)4 Twist Cubane Cluster Using Three NNO Mixed Ligands: Hirshfeld, Spectral, Thermal and Oxidation Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A novel [Ni4(µ3-O)4] twisted cubane complex, Ni4Cl2(NN)2(ONN)2(NNO)2(H2O)2·2THF, was prepared from a crude mixture of three bidentate ligands. A mixture of ethyl 1-(hydroxymethyl)-3-methyl-1H-pyrazole-5-carboxylate (HONN) and ethyl 1-(hydroxyl-methyl)-5-methyl-1H-pyrazole-3-carboxylate (NNOH) were added to ethyl 3-methyl-1H-pyrazole-5-carboxylate (NNH) then mixed to NiCl2·6H2O solution under ambient conditions. Reaction progress was monitored via infrared and ultraviolet–visible spectroscopies and energy-dispersive X-ray spectroscopy was used to analyze the product. Reaction yields for cluster synthesis were very good. Single crystal structure determination for the cluster indicates a novel [Ni4(µ3-O)4] twisted cubane structure with octahedral geometry around each of the Ni(II) centers in Ni4Cl2(NN)2(ONN)2(NNO)2(H2O)2·2THF. The lattice is stabilized by hydrogen bonding and H–\( \pi \) stacking. Hirshfeld surface analysis (HSA) corroborates the single crystal structure determination results. The cluster displays significant thermal stability under open atmosphere conditions; it decomposes in three steps at high temperature. The cluster demonstrates promising results as a catalyst; it promoted the complete oxidation of catechol to o-Quinone in under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. A. Martínez, J. Lorenzo, M. J. Prieto, M. Font-Bardia, X. Solans, F. X. Avilés, and V. Moreno (2007). Bioorg. Med. Chem. 15, 969.

    Article  Google Scholar 

  2. B. Antonioli, D. J. Bray, J. K. Clegg, K. A. Jolliffe, K. Gloe, K. Gloe, and L. F. Lindoy (2007). Polyhedron 26, 673.

    Article  CAS  Google Scholar 

  3. J. Maroszová, J. Moncol, Z. Padelková, R. Sillanpä, T. Lis, and M. Koman (2011). Cent. Eur. J. Chem. 9, 453.

    Google Scholar 

  4. T. C. Stamatatos, K. A. Abboud, W. Wernsdorfer, and G. Christou (2007). Angew. Chem. 119, 902.

    Article  Google Scholar 

  5. F.-M. Wang, C.-S. Lu, Y.-Z. Li, and Q.-J. Meng (2010). Acta Crystallogr. Sect. E E66, m594.

    Article  Google Scholar 

  6. T. C. Stamatatos, A. K. Boudalis, K. V. Pringouri, C. P. Raptopoulou, A. Terzis, J. Wolowska, E. J. L. McInnes, and S. P. Perlepes (2007). Eur. J. Inorg. Chem. 2007, 5098.

    Article  Google Scholar 

  7. C. Icsel, V. T. Yilmaz, F. Ari, E. Ulukaya, and W. T. A. Harrison (2013). Eur. J. Med. Chem. 60, 386.

    Article  CAS  Google Scholar 

  8. A. Jabłonska-Wawrzycka, B. Barszcz, M. Zienkiewicz, M. Hodorowicz, J. Jezierska, K. Stadnicka, Ł. Lechowicz, and W. K. Spectrochim (2014). Acta A: mol. Biomol. Spectrosc. 129, 632.

    Article  Google Scholar 

  9. M. Zienkiewicz, A. Jabłonska-Wawrzycka, J. Szlachetko, Y. Kayser, K. Stadnicka, W. Sawka Dobrowolska, J. Jezierska, and B. Barszcz (2014). J. Sá, Dalton Trans 43, 8599.

    Article  CAS  Google Scholar 

  10. M. Zienkiewicz, J. Szlachetko, C. Lothschütz, M. Hodorowicz, A. Wawrzycka, J. Sá, and B. Barszcz (2013). Dalton Trans. 42, 7761.

    Article  CAS  Google Scholar 

  11. M. El Kodadi, F. Malek, R. Touzani, and A. Ramdani (2008). Catal. Commun. 9, 966.

    Article  Google Scholar 

  12. E. Kim, H. Y. Woo, S. Kim, H. Lee, D. Kim, and H. Lee (2012). Polyhedron 42, 135.

    Article  CAS  Google Scholar 

  13. A. Otero, J. Fernández-Baeza, A. Lara-Sánchez, and L. F. Sánchez-Barba (2013). Coord. Chem. Rev. 257, 1806.

    Article  CAS  Google Scholar 

  14. F. Xue, J. Zhao, and T. S. A. Hor (2013). Dalton Trans. 42, 5150.

    Article  CAS  Google Scholar 

  15. M. Yang, W. J. Park, K. B. Yoon, J. H. Jeong, and H. Lee (2011). Inorg. Chem. Commun. 14, 189.

    Article  CAS  Google Scholar 

  16. N. Boussalah, R. Touzani, I. Bouabdallah, S. El Kadiri, and S. Ghalem (2009). J. Mol. Catal. A: Chem. 306, 113.

    Article  CAS  Google Scholar 

  17. M. Scarpellini, J. Gätjens, O. J. Martin, J. W. Kampf, S. E. Sherman, and V. L. Pecoraro (2008). Inorg. Chem. 47, 3584.

    Article  CAS  Google Scholar 

  18. M. Scarpellini, A. J. Wu, J. W. Kampf, and V. L. Pecoraro (2005). Inorg. Chem. 44, 5001.

    Article  CAS  Google Scholar 

  19. M. D. Kärkäs, O. Verho, E. V. Johnston, and B. Åkermark (2014). Chem. Rev. 114, 11863.

    Article  Google Scholar 

  20. Y. Umena, K. Kawakami, J.-R. Shen, and N. Kamiya (2011). Nature 473, 55.

    Article  CAS  Google Scholar 

  21. X.-B. Han, Y.-G. Li, Z.-M. Zhang, H.-Q. Tan, Y. Lu, E.-B. Wang (2015.) J. Am. Chem. Soc.137, 5486. b) A. K. Poulsen, A. Rompel, C. J. McKenzie, Angew (2005). Chem. Int. Ed. 44, 6916.

  22. A. Titi, T. Shiga, H. Oshio, R. Touzani, B. Hammouti, M. Mouslim, and I. Warad (2020). J. Mol. Struc. 1199, 126995.

    Article  CAS  Google Scholar 

  23. S. Mukhopadhyay, S. K. Mandal, S. Bhaduri, and W. H. Armstrong (2004). Chem. Rev. 104, 3981.

    Article  CAS  Google Scholar 

  24. K. Wolff, D. J. Grimwood, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman Crystal Explorer 2.1 (University of Western Australia, Perth, 2007).

    Google Scholar 

  25. G. M. Sheldrick (2008). Acta Cryst. 64, 112.

    Article  CAS  Google Scholar 

  26. G. Huang, S. Hua, I. Po-Chun Liu, C. Chien, J. Kuo, G. Lee, and S. Peng (2012). C. R. Chimie 15, 159.

    Article  CAS  Google Scholar 

  27. M. Jana, J. L. Priego, R. Jiménez-Aparicio, and T. K. Mondal (2014). Mondal. Spectrochimica Acta A 133, 714.

    Article  CAS  Google Scholar 

  28. I. Warad, F. F. Awwadi, B. Abd Al-Ghani, A. Sawafta, N. Shivalingegowda, N. K. Lokanath, M. S. Mubarak, T. Ben Hadda, A. Zarrouk, F. Al-Rimawi, A. B. Odeh, and S. A. Barghouthi (2018). Ultrasonics Sonochem. 48, 1.

    Article  CAS  Google Scholar 

  29. I. Warad, Y. Al-Demeri, M. Al-Nuri, S. Shahwan, M. Abdoh, S. Naveen, N. K. Lokanath, M. S. Mubarak, T. B. Hadda, and Y. N. Mabkhot (2017). J. Mol. Struct. 1142, 217.

    Article  CAS  Google Scholar 

  30. F. A. Saleem, S. Musameh, A. Sawafta, P. Brandao, C. J. Tavares, S. Ferdov, A. Barakat, A. Al Ali, M. Al-Noaimi, and I. Warad (2017). Arab. J. Chem. 10, 845.

    Article  Google Scholar 

  31. I. Warad and A. Barakat (2017). J. Mol. Struc. 1134, 17.

    Article  CAS  Google Scholar 

  32. K. S. Joya, L. Sinatra, L. G. AbdulHalim, C. P. Joshi, M. N. Hedhili, O. M. Bakrb, and I. Hussain (2015). Nanoscale 112, 1.

    Google Scholar 

  33. B. K. Das and R. Chakrabarty (2011). J. Chem. Sci. 123, 163.

    Article  CAS  Google Scholar 

  34. A. Zerrouki, R. Touzani, and S. El Kadiri (2011). Arab. J. Chem. 4, 459.

    Article  CAS  Google Scholar 

  35. A. Mouadili, A. Zerrouki, L. Herrag, B. Hammouti, S. El Kadiri, and R. Touzani (2012). Res. Chem. Interm. 38, 2427.

    Article  CAS  Google Scholar 

  36. H. Boulemche, B. Anak, A. Djedouani, R. Touzani, M. Francois, S. Fleutot, and F. Rabilloud (2019). Mol. Struc. 1178, 606.

    Article  CAS  Google Scholar 

  37. Z. Bouanane, M. Bounekhel, M. Elkolli, F. Abrigach, M. Khoutoul, R. Boyaala, R. Touzani, and A. Hellal (2017). J. Mol. Struc. 1139, 238.

    Article  CAS  Google Scholar 

  38. R. Modak, Y. Sikdar, S. Mandal, and S. Goswami (2013). Inorg. Chem. Commun. 09, 26.

    Google Scholar 

  39. S. Indira, G. Vinoth, M. Bharathi, S. Bharathi, A. K. Rahiman, and K. S. Bharathi (2019). Inorg. Chim. Acta 495, 118988.

    Article  CAS  Google Scholar 

  40. M. N. Ahamad, F. Sama, M. N. Akhtar, Y.-C. Chen, M.-L. Tong, M. Ahmad, M. Shahid, S. Hussain, and K. Khan (2017). New J. Chem. 41, 14057.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Researchers Supporting Project number (RSP-2019/78), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Warad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2020_1780_MOESM1_ESM.docx

Supplementary material 3 (DOCX 414 kb). Fig. 1S Computed (a) dnorm surface, (b) shape index, (c) curvedness structures, and (d) inside/outside two-dimensional fingerprint plots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titi, A., Oshio, H., Touzani, R. et al. Synthesis and XRD of Novel Ni4(µ3-O)4 Twist Cubane Cluster Using Three NNO Mixed Ligands: Hirshfeld, Spectral, Thermal and Oxidation Properties. J Clust Sci 32, 227–234 (2021). https://doi.org/10.1007/s10876-020-01780-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01780-0

Keywords

Navigation