Skip to main content
Log in

Antidiabetic and Antioxidant Activity of Green Synthesized Starch Nanoparticles: An In Vitro Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

A Correction to this article was published on 21 January 2020

This article has been updated

Abstract

This study was aimed to assess the antidiabetic and antioxidant activity of starch nanoparticles (StNPs) synthesized by green synthesis through in vitro model. Several organic solvents were used for the extraction of active compounds from Gymnema sylvestre. The methanolic extract was used for the synthesis of StNPs from dried potato starch. The characterization studies such as GC–MS, FT-IR, SEM, EDS and XRD were performed to analyze the sample. The StNPs were found to be ellipsoidal in nature with the average particle size of 19.8 nm. The StNPs showed highest DPPH radical scavenging activity with 74.41 ± 0.54% at 100 µg/mL concentration. Besides, the IC50 values were found to be 66.69 µg/mL and 61.99 µg/mL for the StNPs and standard (ascorbic acid), respectively. The StNPs showed the highest metal ion chelating activity of 66.71 ± 0.34% at a concentration of 100 µg/mL. The highest reducing power of StNPs was found to be 0.385 ± 0.002 at 100 µg/mL. Moreover, in vitro antidiabetic activity was studied using alpha-amylase inhibition assay and the highest inhibition activity of StNPs was 58.56 ± 0.44% at a concentration of 100 µg/mL. The present study provided preliminary evidence indicated that the StNPs synthesized using methanolic extract of G. sylvestre had potential activity against diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 21 January 2020

    In the original version of the article the acknowledgement section was unfortunately missed. The acknowledgement is published in this erratum article.

References

  1. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah (2018). Beilstein J. Nanotechnol. 9, 1050.

    Article  CAS  Google Scholar 

  2. S. Mishra, C. Keswani, P. C. Abhilash, L. F. Fraceto, and H. B. Singh (2017). Front. Plant Sci. 8, 471.

    PubMed  PubMed Central  Google Scholar 

  3. M. A. Gatoo, S. Naseem, M. Y. Arfat, A. M. Dar, K. Qasim, and S. Zubair (2014). Biomed. Res. Int. 2014, 498420.

    Article  Google Scholar 

  4. Q. Abbas, M. Saleem, A. R. Phull, M. Rafiq, M. Hassan, K.-H. Lee, and S.-Y. Seo (2017). Iran. J. Pharm. Res. 16, 760.

    CAS  Google Scholar 

  5. N. Karimi, A. Chardoli, and A. Fattahi (2017). Iran. J. Pharm. Res. 16, 1167.

    PubMed  PubMed Central  Google Scholar 

  6. B. Miri, N. Motakef-Kazemi, S. A. Shojaosadati, and A. Morsali (2018). Iran. J. Pharm. Res. 17, 1164.

    PubMed  PubMed Central  Google Scholar 

  7. M. M. Or Rashid, M. S. Islam, M. A. Haque, M. A. Rahman, M. T. Hossain, and M. A. Hamid (2016). Iran. J. Pharm. Res. 15, 591.

    PubMed  PubMed Central  Google Scholar 

  8. S. Salari, S. Esmaeilzadeh Bahabadi, A. Samzadeh-Kermani, and F. Yousefzaei (2019). Iran. J. Pharm. Res. 18, 430.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. K. S. Siddiqi, A. Husen, and R. A. K. Rao (2018). J. Nanobiotechnol. 16, 14.

    Article  Google Scholar 

  10. S. H. Lee and B.-H. Jun (2019). Int. J. Mol. Sci. 20, 865.

    Article  CAS  Google Scholar 

  11. H. Barabadi, K. Damavandi Kamali, F. Jazayeri Shoushtari, B. Tajani, M. A. Mahjoub, A. Alizadeh, and M. Saravanan (2019). J. Clust. Sci. 30, 1375.

    Article  CAS  Google Scholar 

  12. S. K. Kulkarni Synthesis of nanomaterials—I (physical methods). in S. K. Kulkarni (ed.), Nanotechnology: principles and practices (Springer International Publishing, Cham, 2015), p. 55.

    Chapter  Google Scholar 

  13. H. Barabadi, F. Kobarfard, and H. Vahidi (2018). Iran. J. Pharm. Res. 17, 87.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. R. Dobrucka (2017). Iran. J. Pharm. Res. 16, 753.

    CAS  Google Scholar 

  15. M. Maham and R. Karami-Osboo (2017). Iran. J. Pharm. Res. 16, 462.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Ramezani, M. Nabiuni, J. Baharara, K. Parivar, and F. Namvar (2019). Iran. J. Pharm. Res. 18, 222.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Z. Rezvani Amin, Z. Khashyarmanesh, B. S. Fazly Bazzaz, and Z. Sabeti Noghabi (2019). Iran. J. Pharm. Res. 18, 210.

    PubMed  PubMed Central  Google Scholar 

  18. R. K. Das, V. L. Pachapur, L. Lonappan, M. Naghdi, R. Pulicharla, S. Maiti, M. Cledon, L. M. A. Dalila, S. J. Sarma, and S. K. Brar (2017). Nanotechnol. Environ. Eng. 2, 18.

    Article  Google Scholar 

  19. S. Menon, S. Rajeshkumar, and S. Venkat Kumar (2017). Resour. Effic. Technol. 3, 516.

    Article  Google Scholar 

  20. Q. Li, Y. Niu, P. Xing, and C. Wang (2018). Chin. Med. 13, 7.

    Article  CAS  Google Scholar 

  21. M. Swierczewska, H. S. Han, K. Kim, J. H. Park, and S. Lee (2016). Adv. Drug Deliv. Rev. 99, 70.

    Article  CAS  Google Scholar 

  22. A. Hebeish, M. H. El-Rafie, M. A. El-Sheikh, and M. E. El-Naggar (2014). J. Inorg. Organomet. Polym. Mater. 24, 515.

    Article  CAS  Google Scholar 

  23. A. American Diabetes (2010). Diabetes Care 33 Suppl 1, S62.

    Article  Google Scholar 

  24. M. Syedy and K. S. Nama (2014). Int. J. Pure Appl. Biosci. 2, 318.

    Google Scholar 

  25. S. Anjali and S. Sheetal (2013). J. Pharmacogn. Phytochem. 2, 22.

    Google Scholar 

  26. O. O. Olubomehin, K. A. Abo, and E. O. Ajaiyeoba (2013). J. Ethnopharmacol. 146, 811.

    Article  CAS  Google Scholar 

  27. T. C. Dinis, V. M. Maderia, and L. M. Almeida (1994). Arch. Biochem. Biophys. 315, 161.

    Article  CAS  Google Scholar 

  28. M. S. Blois (1958). Nature 181, 1199.

    Article  CAS  Google Scholar 

  29. T. Hatano, H. Kagawa, T. Yasuhara, and T. Okuda (1988). Chem. Pharm. Bull. 36, 2090.

    Article  CAS  Google Scholar 

  30. V. P. Cirillo (1962). J. Bacteriol. 84, 485.

    Article  CAS  Google Scholar 

  31. M. Oyaizu (1986). Jpn. J. Nutr. 44, 307.

    Article  CAS  Google Scholar 

  32. S. Bel Haaj, A. Magnin, C. Petrier, and S. Boufi (2013). Carbohydr. Polym. 92, 1625.

    Article  CAS  Google Scholar 

  33. S. Kalyani and D. Bandita (2014). J. Med. Plants Stud. 2, 19.

    Google Scholar 

  34. R. Pitchaipillai and T. Ponniah (2016). Int. Biol. Biomed. J. 2, 171.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arulvel Ramaswamy or Muthupandian Saravanan.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varadharaj, V., Ramaswamy, A., Sakthivel, R. et al. Antidiabetic and Antioxidant Activity of Green Synthesized Starch Nanoparticles: An In Vitro Study. J Clust Sci 31, 1257–1266 (2020). https://doi.org/10.1007/s10876-019-01732-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01732-3

Keywords

Navigation