Skip to main content
Log in

Third Order Non-linear Optical Susceptibility (χ(3)) and Evaluation of Antibacterial Activity of Cu-Doped ZnSe Nanocrystals Fabricated by Hydro-Microwave Technique

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, Cu-doped ZnSe nanoparticles (NPs) at the presence of different Cu contents and also with/without 6 min microwave irradiation were fabricated in aqueous medium, and then some optical properties and also their antibacterial properties against two gram-positive bacteria of Staphylococcus aureus and Bacillus cereus were investigated, employing disc-diffusion method. To fabricate these NPs, Se ion source was provided from the interaction between Se and NaBH4, and zinc acetate was used as Zn ion source. At the fixed pH of 11.2, thioglycolic acid was used as surfactant to prevent agglomeration of NPs. Previously reported results of X-ray diffraction characterization and UV-visible spectroscopy of solutions containing nanoparticles, show the range of 1.94–2.14 for particles size and 3.50–3.65 eV for energy gap. In this research, non-linear optical susceptibility of ZnSe and ZnSe:Cu nanoparticles have been determined; results imply that these nanoparticles have a high potential in optical and optoelectronic applications and among them, sample owing 1.5% of impurity and so owing the highest χ(3), is an optimum candidate in optical applications. Results of the present research confirm that nonlinear optical susceptibility is in inverse relation with the energy gap and increase with increasing of Cu%. To explore the antibacterial activity of the present samples, first Staphylococcus aureus and Bacillus cereus bacteria were inoculated on Muller–Hinton–Agar culture, and then the loaded discs by nanoparticles were placed on them. After 18 h from the incubation, the inhibition zone diameters (their antibacterial sensitivity) were measured for each bacteria. Results of this research imply on that these nanoparticles have considerable antibacterial activity against the gram-positive bacteria of Staphylococcus aureus and Bacillus cereus, and have the usage ability in the field of antibacterial drugs. During this assessment, increase in impurity content resulted in improvement of antibacterial potential, especially the more efficiency on Staphylococcus aureus. In addition, it was shown that increase of the concentration (loading volume of solution containing NPs) lead to increase of bacterial growth inhibition. Results confirm that the optimal antibacterial activity is devoted to the 0.75% Cu-doped nanoparticles on Staphylococcus aureus. Also the undoped sample prepared under 6 min microwave irradiation had the highest antibacterial activity against the Bacillus cereus. In brief, studied NPs show excellent bactericidal and optical activity, introducing them as promising bio-opto-materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. F. Webb, E. M. C. D’Agata, P. Magal, and S. Ruan (2005). Math. Popul. Dyn. 102, 13343.

    CAS  Google Scholar 

  2. S. Salamitou, F. Ramisse, M. Brehe!lin, D. Bourguet, N. Gilois, M. Gominet. E. Hernandez, and D. Lereclus (2000). Microbiology. 146, 2825.

  3. A. Ultee, E. P. W. Kets, and E. J. Smid (2004). Mol. Nutr. Food Res. 48, 479.

    Article  CAS  Google Scholar 

  4. H. Chambers and F. R. Deleo (2009). Nat. Rev. Microbiol. 7, 629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Friedman, R. Buick, and C. T. Elliott (2004). J. Food Protect. 67, 1774.

    Article  CAS  Google Scholar 

  6. M. N. Gallucci, M. Oliva, C. Casero, J. Dambolena, A. Luna, and J. Zygadlo (2009). Flavour Fragr. J. 24, 348.

    Article  CAS  Google Scholar 

  7. G. Normanno, A. Firinu, S. Virgilio, G. Mula, A. Dambrosio, A. Poggiu, L. Decastelli, R. Mioni, S. Scuota, E. Bolzoni, Di Giannatale, E., A.P. Salinetti, G. La Salandra, G. Bartoli, F. Zuccon, T. Pirino, S. Sias, A. Parisi, N.C. Quaglia, and G.V. Celano (2005). Int. J. Food Microbiol. 98, 73.

  8. W. Lee, K. J. Kim, and D. G. Lee (2014). Biometals. 27, 1191.

    Article  CAS  PubMed  Google Scholar 

  9. K. Krishnamoorthy, G. Manivannan, S. J. Kim, K. Jeyasubramanian, and M. Premanathan (2012). J. Nanoparticle Res. 14, 1063.

    Article  CAS  Google Scholar 

  10. D. Bhattacharya, B. Saha, A. Mukherjee, C.R. Santra, P. and Karmakar (2012).Nanosci. Nanotechnol. 2, 14.

  11. D. Lin and B. Xing (2007). Environ. Pollut. 150, 243.

    Article  CAS  PubMed  Google Scholar 

  12. T. Fukumura, E. Sambandan, and H. Yamashita (2018). J. Coat. Technol. Res. 15, 437.

    Article  CAS  Google Scholar 

  13. H. A. Hemeg (2017). Int. J. Nanomed. 12, 8211.

    Article  CAS  Google Scholar 

  14. E. Badiei, P. Sangpour, M. Bagheri, and M. Pazouki (2014). Int J. Eng. 27, 1803.

    Google Scholar 

  15. M. Veerapandian and K. Yun (2009). Dig. J. Nanomater. Biostructures. 4, 243.

    Google Scholar 

  16. M. Veerapandian and K. Yun (2011). Appl. Microbiol. Biotechnol. 90, 1655.

    Article  CAS  PubMed  Google Scholar 

  17. B. Kulyk, B. Sahraoui, V. Figà, B. Turko, and V. Kapustianyk (2009). J. Alloys Compd. 481, 819.

    Article  CAS  Google Scholar 

  18. J. T. Zhu, W. J. Tian, S. Zheng, J. P. Huang, and L. W. Zhou (2007). J. Appl. Phys. 102, 113113.

    Article  CAS  Google Scholar 

  19. B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk (2009). J. Appl. Phys. 106, 093102.

    Article  CAS  Google Scholar 

  20. B. Kulyk, V. Kapustianyk, V. Tsybulskyy, O. Krupka, and B. Sahraoui (2010). J. Alloys Compd. 502, 24.

    Article  CAS  Google Scholar 

  21. K. Iliopoulos, D. Kasprowicz, A. Majchrowski, E. Michalski, D. Gindre, and B. Sahraoui (2013). Appl. Phys. Lett. 103, 231103.

    Article  CAS  Google Scholar 

  22. K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui (2014). Dyes Pigments. 101, 229.

    Article  CAS  Google Scholar 

  23. M. Jothibas, C. Manoharan, S. Johnson Jeyakumar, P. Praveen, L. Kartharinal Punithavathy, and J. Prince Richarda (2018). Sol. Energy. 159, 434.

  24. N. Pradhan, S. D. Adhikari, A. Nag, and D. D. Sarma (2017). Angew. Chem. Int. Edit. 56, 7038.

    Article  CAS  Google Scholar 

  25. A. M. Smith and S. Nie (2009). Chem. Res. 43, 190.

    Article  CAS  Google Scholar 

  26. A.C. Berends, and C.D. Mello Donega (2017). Phys. Chem. Lett. 8, 4077.

  27. B. Feng, J. Cao, J. Yang, S. Yang, and D. Han (2014). Mater. Res. Bull. 60, 794.

    Article  CAS  Google Scholar 

  28. J. Archana, M. Navaneethan, Y. Hayakawa, S. Ponnusamy, and C. Muthamizhchelvan (2012). Mater. Res. Bull. 47, 1892.

    Article  CAS  Google Scholar 

  29. M. Molaei, A. R. Khezripour, and M. Karimipour (2014). Appl. Surf. Sci. 317, 236.

    Article  CAS  Google Scholar 

  30. D. Souri, M. Sarfehjou, and A. Khezripour (2018). J. Mater. Sci. Mater. Electron. 2, 3411.

    Article  CAS  Google Scholar 

  31. D. Souri, K. Ahmadian, and A. R. Khezripour (2018). J. Electron. Mater. 47, 6759.

    Article  CAS  Google Scholar 

  32. M. Balouiri, M. Sadiki, and S. K. Ibnsouda (2016). J. Pharm. Anal. 6, 71.

    Article  PubMed  Google Scholar 

  33. A. J. Driscoll, N. Bhat, R. A. Karron, K. L. O’Brien, and D. R. Murdoch (2012). Clin. Infect. Dis. 54, 159.

    Article  Google Scholar 

  34. A. K. Singh, V. Viswanath, and V. C. Janu (2009). J. Lumin. 129, 874.

    Article  CAS  Google Scholar 

  35. J. Tauc and A. Menth (1972). J. Non Cryst. Sol. 8, 569.

    Article  Google Scholar 

  36. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich (1961). Gener. Opt. Harmonics. Rev. Lett. 7, 118.

    Article  Google Scholar 

  37. R. W. Boyd, Nonlinear Optics (Academic Press, Cambridge, 2003).

  38. H. Ticha and L Tichy (2002). J. Opt. Adv. Mater. 4, 381.

  39. P. W. Milonni and J. H. Eberly, Laser Physics (John Wiley, Hoboken,2010).

  40. C. Wang (1970). Phys. Rev. 2, 2045.

    Article  Google Scholar 

  41. D. Souri, A. R. Khezripour, M. Molaei, and M. Karimipour (2017). Curr. Appl. Phys. 17, 41.

    Article  Google Scholar 

  42. G. Xue, W. Chao, N. Lu, and S. Xingguang (2011). J. Lumin. 131, 1300.

    Article  CAS  Google Scholar 

  43. P. Hosseinkhani, A.M. Zand, S. Imani, M. Rezayi, and S. Rezaei Zarchi (2011). Int. J. Nano Dimens. 1, 279.

  44. S. Ebrahimi, D. Souri, and M. Ghabooli (2018). Nanoscale. 5, 179.

    Google Scholar 

  45. N. Salimi, D. Souri, and M. Ghabooli (2018). Iran. J. Ceram. Sci. Eng. 7, 1.

    Google Scholar 

  46. M. Raffi, S. Mehrwan, T.M. Bhatti, J.A. Akhter, A. Hameed, W. Yawar, and M. ul Hasan (2010). Annals Microbiol. 60, 75.

  47. C. Chaliha, B.K. Nath, P.K. Verma, and E. Kalita (in press). Arab. J. Chem.

  48. J. Díaz-Visurraga, C. Gutiérrez, C. von Plessing, and A. García (2011). Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 210.

  49. I. Sondi, and B. Salopek-Sondi (2004). J. Colloid Interface Sci. 275, 177.

  50. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, and D. Dash (2007). Nanotechnology. 18, 225103.

    Article  CAS  Google Scholar 

  51. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H. Mohamad Kaus, L.C. Ann, S.K. Mohd Bakhori, H. Hasan, and D. Mohamad (2015). Nano-Micro letters. 7, 219.

  52. J. Lee, B. Purushothaman, Z. Li, G. Kulsi, and J. Myong Song (2017). Appl. Sci. 7, 736.

  53. A. K. Chatterjee, R. Chakraborty, and T. Basu (2014). Nanotechnology. 25, 135101.

    Article  CAS  PubMed  Google Scholar 

  54. A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. Mohamad Kaus, L.C. Ann, S.K. Mohd Bakhori, H. Hasan, and D. Mohamad (2015). Nano-Micro Letters. 7, 219.

Download references

Acknowledgements

The authors are thankful to Dr. Hadis Tavafi for kindly providing different bacterial strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Souri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S., Souri, D. & Ghabooli, M. Third Order Non-linear Optical Susceptibility (χ(3)) and Evaluation of Antibacterial Activity of Cu-Doped ZnSe Nanocrystals Fabricated by Hydro-Microwave Technique. J Clust Sci 30, 677–686 (2019). https://doi.org/10.1007/s10876-019-01527-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01527-6

Keywords

Navigation