Skip to main content
Log in

Production, Optimization and Characterisation of Chitosanase of Bacillus sp. and its Applications in Nanotechnology

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Chitosanases is a class of enzymes which hydrolyse chitosan, a natural biopolymer consisting of d-glucosamine in various degrees. In this study, chitosanase producing Bacillus sp. was isolated from soil sample. Chitosanase production was optimized using response surface methodology and the produced chitosanase was characterized. The crude enzyme was found to possess antibacterial and antifungal activity. Chitosanase enzyme was used for trimming chitosan based polymeric nanoparticles produced using sodium trimetaphosphate chelator. Chitosanase enzyme was also utilized for synthesis of silver nanoparticles which were then characterized by UV–Vis, FTIR, SEM, TEM and AFM. The produced nanoparticles were checked for antibacterial and antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. S. Kumar, L. Kumar, V. Sahai, and R. Gupta (2009). J. Ind. Microbiol. Biotechnol. 36, 427.

    Article  CAS  PubMed  Google Scholar 

  2. S. S. Kumar, N. Arora, R. Bhatnagar, and R. Gupta (2009). J. Mol. Catal. B Enzymatic. 59, 41–46.

    Article  CAS  Google Scholar 

  3. R. Hamid, M. A. Khan, M. Ahmad, M. M. Ahmad, M. Z. Abdin, J. Musarrat, and S. Javed (2013). J. Pharm. BioAllied Sci. 5, 21–29.

    PubMed  PubMed Central  Google Scholar 

  4. A. Arafat, S. A. Samad, S. M. Masum, and M. Moniruzzaman (2015). Int. J. Sci. Eng. Res. 6, (5), 538–541.

    Google Scholar 

  5. L. A. Rabea, M. E. T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut (2003). Biomacromolecules 4, 1457–1465.

    Article  CAS  PubMed  Google Scholar 

  6. M. Nogawa, H. Takahashi, A. Kashiwagi, K. Ohshima, H. Okada, and Y. Morikawa (1998). Appl. Environ. Microbiol. 64, 890–895.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. W. J. Jung, J. H. Kuk, K. Y. Kim, K. C. Jung, and R. D. Park (2006). Protein Exp. Purif. 45, 125–131.

    Article  CAS  Google Scholar 

  8. L. C. A. Silva, T. L. Honorato, T. T. Franco, and S. Rodrigues (2012). Food Bioprocess. Technol. 5, 1564–1572.

    Article  CAS  Google Scholar 

  9. I. Boucher, A. Dupuy, P. Vidal, W. A. Neugebauer, and R. Brzezinski (1992). Appl. Microbiol. Biotechnol. 38, 188–193.

    Article  CAS  Google Scholar 

  10. E. S. A. El-Sherbiny (2011). Asian J. Biol. Sci. 4, 15–24.

    Article  CAS  Google Scholar 

  11. A. Pelletier and J. Sygusch (1990). Appl. Environ. Microbiol. 56, 844–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. K. Akiyama, T. Fujita, K. Kuroshima, T. Sakane, T. Yokota, and R. Takata (1999). J. Biosci. Bioeng. 87, 383–385.

    Article  CAS  PubMed  Google Scholar 

  13. Y. Sun, W. Liu, B. Han, J. Zhang, and B. Liu (2006). Biotechnol. Lett. 28, 1393–1399.

    Article  CAS  PubMed  Google Scholar 

  14. S. K. Hsu, Y. C. Chung, C. T. Chang, and H. Y. Sung (2012). J. Agric. Food Chem. 60, 649–657.

    Article  CAS  PubMed  Google Scholar 

  15. S. L. Wang, W. N. Tseng, and T. W. Liang (2011). Biodegradation 22, 939–948.

    Article  CAS  PubMed  Google Scholar 

  16. A. S. A. El-Saye, G. H. Rabie, N. S. El-Gazzar, and G. S. Ali (2017). J. Nanomed. Nanotechnol. 8, 420.

    Google Scholar 

  17. R. Singh, U. U. Shedbalkar, S. B. Nadhe, S. A. Wadhwani, and B. A. Chopade (2017). AMB Express. 7, 226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. J. Wee, L. V. Reddy, S. D. Yoon, and H. W. Ryu (2011). J. Chem. Technol. Biotechnol. 86, 757–762.

    Article  CAS  Google Scholar 

  19. P. Senthilkumar, S. S. Dawn, K. S. Samanvitha, S. S. Kumar, G. N. Kumar, and A. V. Samrot (2017). Biocatal. Agric. Biotechnol. 12, 292–298.

    Article  Google Scholar 

  20. R. Vidhyalakshmi, V. C. Nachiyar, N. G. Kumar, and S. Sunkar (2016). Int. J. Biol. Macromol. 87, 405–414.

    Article  CAS  PubMed  Google Scholar 

  21. N. Gopakumaran, S. G. Veerasangili, and T. P. Valliaparambal (2017). Jordan J. Biol. Sci 10, 221–227.

    CAS  Google Scholar 

  22. U. K. Laemmli (1970). Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  23. D. A. Hager and R. R. Burgess (1980). Anal. Biochem. 109, 76–86.

    Article  CAS  PubMed  Google Scholar 

  24. A. Farouk (1982). Pharmaceutics 12, 295–298.

    Article  CAS  Google Scholar 

  25. L. Lillo, J. Alarcón, and G. Cabello (2008). Z. Naturforsch C 63, 644–648.

    Article  CAS  PubMed  Google Scholar 

  26. S. N. Kharat and V. D. Mendhulkar (2016). Mater. Sci. Eng. C 62, 719–724.

    Article  CAS  Google Scholar 

  27. A. V. Samrot, P. Raji, A. J. Selvarani, and P. Nishanthini (2018). Biocatal. Agric. Biotechnol. 16, 253–270.

    Article  Google Scholar 

  28. Z. A. Ali, R. Yahya, S. D. Sekaran, and R. Puteh (2016). Adv. Mater. Sci. Eng. Article ID 4102196.

  29. P. Logeswari, S. Silambarasan, and J. Abraham (2015). J. Saudi Chem. Soc. 19, 311–317.

    Article  Google Scholar 

  30. C. O’May and N. Tufenkji (2011). Appl. Environ. Microbiol. 77, 3061–3067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Tremblay, A. P. Richardson, F. Lepine, and E. Deziel (2007). Environ. Microbiol. 9, 2622–2630.

    Article  CAS  PubMed  Google Scholar 

  32. P. D. Haaland Separating Signals from the Noise. Experimental Design in Biotechnology (Marcel Dekker, New York, 1989), pp. 61–83.

    Google Scholar 

  33. R. H. Myers and D. Contgomery Surface Methodology: Process and Product Optimization Using Designed Experiments, 1st ed (Wiley, New York, 1995).

    Google Scholar 

  34. R. V. Muralidhar, R. R. Chirumamila, R. Marchant, S. N. Nee, and P. Poonam (2001). Biochem. Eng. J. 9, 17–23.

    Article  CAS  Google Scholar 

  35. N. Prakash and S. Gopal (2017). IIOAB J. 8, 1–6.

    Google Scholar 

  36. M. A. Kassem, N. Eltoukhy, R. Abdelnabi, N. Fanaki, and H. Abou-Shleib (2013). N. Egypt. J. Microbiol. 36, 177–197.

    Google Scholar 

  37. J. C. Fernandes, F. K. Tavaria, J. C. Soares, O. S. Ramos, J. M. Monteiro, M. E. Pintado, and X. F. Malcata (2008). Food Microbiol. 25, 922–928.

    Article  CAS  PubMed  Google Scholar 

  38. P. M. Gopinath, A. Ranjani, D. Dhanasekaran, N. Thajuddin, G. Archunan, M. A. Akbarsha, B. Gulyás, and P. Padmanabhan (2016). Sci. Rep. 6, 34058. https://doi.org/10.1038/srep34058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. P. Senthilkumar, S. Rashmitha, P. Veera, C. V. Ignatious, C. SaiPriya, A. V. Samrot (2018). J. Pure Appl. Microbiol. 12(02).

  40. A. V. Samrot, N. Shobana, and R. Jenna (2018). Bionanoscience 8, 632–646. https://doi.org/10.1007/s12668-018-0521-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antony V. Samrot or S. Suresh Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samrot, A.V., Shobana, N., Suresh Kumar, S. et al. Production, Optimization and Characterisation of Chitosanase of Bacillus sp. and its Applications in Nanotechnology. J Clust Sci 30, 607–620 (2019). https://doi.org/10.1007/s10876-019-01520-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01520-z

Keywords

Navigation