Skip to main content
Log in

On the Origin of the Large Stokes-Shift of the Emission of CdS Nanoparticles Embedded in a Phosphate Glass Matrix

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

XRD and TEM characterisation evidenced the formation of well-dispersed CdS nanoparticles inside a phosphate glass matrix. Optical absorption and time-resolved photoluminescence study were carried out on the prepared glass samples. Optical absorption revealed the fast character of the growth of CdS nanoparticles in this medium. Photoluminescence spectra showed only one large band with a maximum at almost 740 nm, which was associated to transitions between energy levels within the bandgap of the CdS nanoparticles. From the steady state and time-resolved measurements, it was suggested that the emission comes mainly from sulfur vacancies inside the nanocrystals and on its surface, which act as deep traps for the photogenerated electrons. The creation of such vacancies was attributed to the loss of sulfur during the glass preparation as evidenced from a chemical analysis using energy dispersive X-ray spectrometry. These traps may be also induced by the fast growth of CdS nanocrystals in this matrix or laser exposure during PL measurements. These CdS-doped glasses with an intense absorption in the UV–Vis region and a large emission band with long lifetime and a large Stokes-shift are adequate for luminescent solar concentrators, photocatalytic applications and solid-state lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. I. Ekimov and A. A. Onushchenko (1982). Sov. Phys. Semicond. USSR 16, 775–778.

    Google Scholar 

  2. A. Al Efros and A. Al Efros (1982). Sov. Phys. Semicond. 16, 772–775.

    Google Scholar 

  3. L. E. Brus (1984). J. Chem. Phys. 80, 4403–4409.

    Article  CAS  Google Scholar 

  4. A. I. Ekimov, L. Al Efros, and A. A. Onushchenko (1985). Solid State Commun. 56, 921–992.

    Article  CAS  Google Scholar 

  5. J. Warnock and D. D. Awschalom (1985). Phys. Rev. B 32, 5529–5531.

    Article  CAS  Google Scholar 

  6. A. Henglein (1989). Chem. Rev. 89, 1861–1873.

    Article  CAS  Google Scholar 

  7. G. T. Einevoll (1992). Phys. Rev. B 45, 3410–3417.

    Article  CAS  Google Scholar 

  8. A. L. Efros, R. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi (1996). Phys. Rev. B 54, 4843–4856.

    Article  CAS  Google Scholar 

  9. U. E. H. Laheld and G. T. Einevoll (1997). Phys. Rev. B 55, 5184–5204.

    Article  CAS  Google Scholar 

  10. S. V. Nair and T. Takagahara (1997). Phys. Rev. B 55, 5153–5170.

    Article  CAS  Google Scholar 

  11. R. Banerjee, R. Jayakrishnan, and P. Ayyub (2000). J. Phys.: Condens. Matter 12, 10647–10654.

    CAS  Google Scholar 

  12. H. Yu, J. Li, R. A. Loomis, L.-W. Wang, and W. E. Buhro (2003). Nat. Mater. 2, 517–520.

    Article  CAS  Google Scholar 

  13. H. Hakan Gürel and H. Ünlü (2013). Mater. Sci. Semicond. Proc. 16, 1619–1628.

    Article  Google Scholar 

  14. B. B. Kale, J.-O. Baeg, S. K. Apte, R. S. Sonawane, S. D. Naik, and K. R. Patil (2007). Mater. Chem. 17, 4297–4303.

    Article  CAS  Google Scholar 

  15. Brenda C. Rowan, Lindsay R. Wilson, and Bryce S. Richards (2008). IEEE J. Sel. Top. Quantum Electron. 14, 1312–1322.

    Article  CAS  Google Scholar 

  16. B. Girginer, G. Galli, E. Chiellini, and N. Bicak (2009). Int. J. Hydrog. Energy 34, 1176–1184.

    Article  CAS  Google Scholar 

  17. S. K. Apte, S. N. Garaje, M. Valant, and B. B. Kale (2012). Green Chem. 14, 1455–1462.

    Article  CAS  Google Scholar 

  18. N. Bel Haj Mohamed, M. Haouari, Z. Zaaboub, M. Nafoutti, F. Hassen, H. Maaref, and H. Ben Ouada (2014). J. Nanopart. Res. 16, 2242–2258.

    Article  CAS  Google Scholar 

  19. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli (2014). Nat. Photon. 8, 392–399.

    Article  CAS  Google Scholar 

  20. S. Halivni, S. Shemesh, N. Waiskopf, Y. Vinetsky, S. Magdassi, and U. Banin (2015). Nanoscale 7, 19193–19200.

    Article  CAS  Google Scholar 

  21. N. Ben Brahim, N. Bel Haj Mohamed, M. Echabaane, M. Haouari, R. Ben Chaâbane, et al. (2015). Sens. Actuators B Chem. 220, 1346–135320.

    Article  CAS  Google Scholar 

  22. N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri (2012). Int. J. Mol. Sci. 13, 12242–12258.

    Article  CAS  Google Scholar 

  23. M. S. de la Fuente, R. S. Sánchez, V. González-Pedro, P. P. Boix, S. G. Mhaisalkar, M. E. Rincón, J. Bisquert, and I. Mora-Seró (2013). J. Phys. Chem. Lett. 4, 1519–1525.

    Article  Google Scholar 

  24. E. V. Kolobkova (2006). Glass Phys. Chem 32, 404–411.

    Article  CAS  Google Scholar 

  25. A. A. Lipovskii, E. V. Kolobkova, I. E. Yakovlev, N. V. Nikonorov, V. D. Petrikov, and A. A. Sitnikova (1997). J. Non Cryst. Solids 2, 2118–2645.

    Google Scholar 

  26. M. Elisa, C. Vasiliu, J. Striber, D. Radu, J. H. Trodahl, and M. Dalley (2006). J. Optoelectron. Adv. Mater. 8, 811–814.

    CAS  Google Scholar 

  27. Moonsub Shim, Congjun Wang, and Philippe Guyot-Sionnest (2001). J. Phys. Chem. B 105, 2369–2373.

    Article  CAS  Google Scholar 

  28. V. L. Colvin, K. L. Cunningham, and A. P. Alivisatos (1994). J. Chem. Phys. 101, 7122–7138.

    Article  Google Scholar 

  29. L. C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. Xiaojun Zhao (2008). Sensors 8, 3082–3105.

    Article  CAS  Google Scholar 

  30. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, et al. (2014). Nat. Photon. https://doi.org/10.1038/nphoton.2014.54.

    Google Scholar 

  31. B. Vaynberg, M. Matusovsky, M. Rosenbluh, et al. (1996). Opt. Commun. 132, 307–310.

    Article  CAS  Google Scholar 

  32. E. V. Kolobkova, A. A. Lipovskii, and N. V. Nikonor (1995). Phys. Stat. Sol. (a) 147, K65.

    Article  CAS  Google Scholar 

  33. A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii (2008). J. Appl. Phys. https://doi.org/10.1063/1.2905320.

    Google Scholar 

  34. Yoshiyuki Asahara (1997). Ceram. Int. 23, 375–382.

    Article  CAS  Google Scholar 

  35. A. Stanculescu, F. Stanculescu, and M. Elisa (2007). J. Optoelectron. Adv. Mater. 9, 828–835.

    CAS  Google Scholar 

  36. R. S. Sonawane, S. K. Apte, S. D. Naik, D. B. Raskar, and B. B. Kale (2008). Mater. Res. Bull. 43, 618–624.

    Article  CAS  Google Scholar 

  37. D. Kim, C. Hwang, D. Gwoo, T. Kim, Y. Kim, and N. Kim (2011). Electron. Mater. Lett. 7, 309–312.

    Article  CAS  Google Scholar 

  38. S. Wageh, A. M. El-Nahas, A. A. Higazy, and M. A. M. Mahmoud (2013). J. Alloy. Compd. 555, 161–168.

    Article  CAS  Google Scholar 

  39. J. M. de Souza, D. N. Messias, V. Pilla, A. C. A. Silva, N. O. Dantas, and A. A. Andra (2017). Opt. Eng. 56, 121909.

    Article  Google Scholar 

  40. D. A. Rayan, Y. H. Elbashar, M. M. Rashad, and A. El-Korashy (2013). J. Non Cryst. Solids 382, 52–56.

    Article  CAS  Google Scholar 

  41. L. Al Efros and M. Rosen (2000). Annu. Rev. Mater. Sci. 30, 475–521.

    Article  Google Scholar 

  42. B. Harieche, B. Boudine, O. Halimi, A. Fischer, A. Boudrioua, and M. Sebais (2011). J. Optoelectron. Adv. Mater. 13, 693–696.

    CAS  Google Scholar 

  43. A. Stanculescu, F. Stanculescu, and M. Elisa (2007). J. Optoelectron. Adv. Mater. 9, 828–835.

    CAS  Google Scholar 

  44. A. Lipovskii, E. Kolobkova, V. Petrikov, I. Kang, A. Olkhovets, Q. Shen, and S. Kycia (1997). Appl. Phys. Lett. 71, 3406–3408.

    Article  CAS  Google Scholar 

  45. J. P. Poole (1949). J. Am. Ceram. Soc. 32, 230–233.

    Article  CAS  Google Scholar 

  46. A. Chahboun, A. G. Rolo, S. A. Filonovich, and M. J. M. Gomes (2006). Sol. Energy Mater. Sol. Cells 90, 1413–1419.

    Article  CAS  Google Scholar 

  47. Anke E. Abken, D. P. Halliday, and Ken Durose (2009). J. Appl. Phys. 105, 64515–64523.

    Article  Google Scholar 

  48. S. Santhi, E. Bernstein, and F. Paille (2006). J. Lumin. 117, 101–112.

    Article  CAS  Google Scholar 

  49. S. F. Wuister and A. Meijerink (2003). J. Lumin. 102, (103), 338–343.

    Article  Google Scholar 

  50. A. E. Saunders, A. Ghezelbash, P. Sood, and B. A. Korgel (2008). Langmuir 24, 9043–9049.

    Article  CAS  Google Scholar 

  51. S. F. Wuister and A. Meijerink (2003). J. Lumin. 105, 35–43.

    Article  CAS  Google Scholar 

  52. H. Weller, U. Koch, M. Gutierrez, A. Henglein, and B. Bunsenges (1984). Phys. Chem. 88, 649–656.

    CAS  Google Scholar 

  53. N. Chestnoy, T. D. Harris, R. Hull, and L. E. Brus (1992). J. Chem. Phys. 90, 3393–3399.

    Article  Google Scholar 

  54. B. Liu, G. Q. Xu, and L. M. G. Z. Shen (2001). J. Appl. Phys. 89, 1059–1063.

    Article  CAS  Google Scholar 

  55. K. Misawa, H. Yao, and T. Kobayashi (1991). Chem. Phys. Lett. 183, 113–118.

    Article  CAS  Google Scholar 

  56. N. R. Mou Pal, P. Mathews, and X. Ma Santiago (2012). J. Nanopart. Res. 14, 916.

    Article  Google Scholar 

  57. A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, and T. Teranishi (2014). Phys. Chem. Chem. Phys. 17, 2850–2858.

    Article  Google Scholar 

  58. Pavan K. Narayanam, P. Purvesh Soni, R. S. Mohanta, S. S. Srinivasa, and S. S. Major Talwar (2013). Mater. Chem. Phys. 139, 196–209.

    Article  CAS  Google Scholar 

  59. G. Q. Xu, B. Liu, S. J. Xu, C. H. Chewa, S. J. Chua, and L. M. Gana (2000). J. Phys. Chem. Solids 61, 829–836.

    Article  CAS  Google Scholar 

  60. Katsumi Mochizuki, Masaaki Satoh, and Kenzo Igaki (1983). J. Appl. Phys. 22, 1414–1417.

    Article  CAS  Google Scholar 

  61. V. Smyntyna, V. Skobeeva, and N. Malushin (2007). Radiat. Meas. 42, 693–696.

    Article  CAS  Google Scholar 

  62. J. F. Suyver (2003). Synthesis, Spectroscopy and Simulation of Doped Nanocrystals. Thesis Debye Institute, Utrecht University, Nederland.

  63. X. S. Zhao, J. Schrœder, P. D. Persans, and T. G. Bilodeau (1991). Phys. Rev. B 43, 12580–12589.

    Article  CAS  Google Scholar 

  64. A. A. Lipovskii, E. V. Kolobkova, and V. D. Petrakos (1998). J. Cryst. Growth 184, (185), 365–369.

    Google Scholar 

  65. Nupur Saxena (2015). RSC Adv. 5, 73545–73551.

    Article  CAS  Google Scholar 

  66. B. Capoen, A. Chahadih, H. El Hamzaoui, O. Cristini, and M. Bouazaoui (2013). Nanscale Res. Lett. 8, 266.

    Article  Google Scholar 

  67. T. Miyoshi, K. Nitta, H. Ohkuni, F. Ikeda, and N. Matsuo (1997). Jpn. J. Appl. Phys. 36, 6726–6727.

    Article  CAS  Google Scholar 

  68. J. Magyar, C. Aita, M. Gajdardziska-Josifovska, A. Sklyarov, K. Mikhaylichenko, and V. V. Yakovlev (2003). Appl. Phys. A 77, 285–291.

    Article  CAS  Google Scholar 

  69. A. L. Gurskii and S. V. Viotikov (1999). Solid State Commun. 112, 339–343.

    Article  CAS  Google Scholar 

  70. X. Xu, Y. Zhao, E. J. Sie, et al. (2011). ACS Nano 5, 3660–3669.

    Article  CAS  Google Scholar 

  71. U. Woggon Optical Properties of Semiconductor Quantum Dots, Springer Tracts in Modern Physics, vol. 136 (Springer, Berlin, 1997).

    Google Scholar 

  72. S. Gorer, J. A. Ganske, J. C. Hemminger, and R. M. Penner (1998). J. Am. Chem. Soc. 120, 9584–9593.

    Article  CAS  Google Scholar 

  73. F. Hache, M. C. Klein, D. Ricard, and C. Flytzanis (1991). J. Opt. Soc. Am. B 8, 1802–1806.

    Article  CAS  Google Scholar 

  74. D. G. Thomas, J. J. Hopfield, and W. M. Augustiniak (1965). Phys. Rev. 140, A202–A220.

    Article  Google Scholar 

  75. K. Sato, S. Kojima, S. Hattori, T. Chiba, K. Ueda-Sarson, T. Torimoto, Y. Tachibana, and S. Kuwabata (2007). Nanotechnology 18, 465702–465710.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Professors B. Champagnon and G. Panczer, Laboratoire de Physico-Chimie des Matériaux Luminescents, UMR 5620 CNRS, 12 Rue Ampère, Université Lyon 1, Villeurbanne, 69622 (France) for PL measurements facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haouari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haouari, M., Saad, N. On the Origin of the Large Stokes-Shift of the Emission of CdS Nanoparticles Embedded in a Phosphate Glass Matrix. J Clust Sci 29, 391–402 (2018). https://doi.org/10.1007/s10876-017-1322-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1322-x

Keywords

Navigation