Skip to main content
Log in

Metal-Free Decomposition of Formic Acid on Pristine and Carbon-Doped Boron Nitride Fullerene: A DFT Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The adsorption and decomposition of formic acid (HCOOH) on pristine and carbon doped B12N12 nanocage are investigated using density functional theory calculations. Both dehydration and dehydrogenation pathways of HCOOH are considered. Based on the present theoretical results, B11N12C nanocage can effectively decompose the HCOOH molecule with the C atom as an activation site, and the corresponding activation energy barriers for the dehydrogenation and dehydration are significantly lowered, compared with the undoped B12N12 case. The catalytic activity of the B11N12C for formic acid dehydrogenation is explored and the calculated barrier (28.2 kcal/mol) of the reaction HCOO → CO2 + H is lower than those on the traditional noble metals. Our results reveal that the low cost B11N12C can be used as an effective metal-free catalyst for HCOOH decomposition at ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Schlapbach and A. Zuttel (2001). Nature 414, 353.

    Article  CAS  Google Scholar 

  2. A. T. M. Seayad and D. T. M. Antonelli (2004). Adv. Mater. 16, 765.

    Article  CAS  Google Scholar 

  3. P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin, and K. L. Tan (2002). Nature 420, 302.

    Article  CAS  Google Scholar 

  4. W. Q. Deng, X. Xu, and W. A. Goddard (2004). Phys. Rev. Lett. 92, 166103.

    Article  Google Scholar 

  5. Z. X. Yang, Y. D. Xia, and R. Mokaya (2007). J. Am. Chem. Soc. 129, 1673.

    Article  CAS  Google Scholar 

  6. M. Dixit, T. A. Maark, and S. Pal (2011). Int. J. Hydrogen Energy 36, 10816.

    Article  CAS  Google Scholar 

  7. K. Gopalsamy, M. Prakash, R. Mahesh Kumar, and V. Subramanian (2012). Int J Hydrogen Energy 37, 9730.

    Article  CAS  Google Scholar 

  8. S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz (2007). Catal. Today 120, 246.

    Article  CAS  Google Scholar 

  9. E. Durgun, S. Ciraci, and T. Yildirim (2008). Phys. Rev. B 77, 085405.

    Article  Google Scholar 

  10. R. Coontz and B. Hanson (2004). Science 305, 957.

    Article  CAS  Google Scholar 

  11. W. Liu, Y. H. Zhao, Y. Li, Q. Jiang, and E. J. Lavernia (2009). J. Phys. Chem. C 113, 2028.

    Article  CAS  Google Scholar 

  12. P. K. Chattaraj, S. Bandaru, and S. Mondal (2011). J. Phys. Chem. A 115, 187.

    Article  CAS  Google Scholar 

  13. O. V. Pupysheva, A. A. Farajian, and B. I. Yakobson (2008). Nano Lett. 8, 767.

    Article  CAS  Google Scholar 

  14. K. Gopalsamy and V. Subramanian (2014). Int. J. Hydrogen Energy 37, 2549.

    Article  Google Scholar 

  15. S. Nachimuthu, P. J. Lai, and J. C. Jiang (2014). Carbon 73, 132.

    Article  CAS  Google Scholar 

  16. E. Iglesia and M. Boudart (1983). J. Catal. 81, 214.

    Article  CAS  Google Scholar 

  17. M. Ojeda and E. Iglesia (2009). Angew. Chem.-Int. Ed. 48, 4800.

    Article  CAS  Google Scholar 

  18. X. Li, X. Ma, F. Shi, and Y. Deng (2010). ChemSusChem 3, 71.

    Article  CAS  Google Scholar 

  19. B. Loges, A. Boddien, H. Junge, and M. Beller (2008). Angew. Chem. Int. Ed. 47, 3962.

    Article  CAS  Google Scholar 

  20. C. Fellay, P. J. Dyson, and G. Laurenczy (2008). Angew. Chem. Int. Ed. 47, 3966.

    Article  CAS  Google Scholar 

  21. S. Fukuzumi, T. Kobayashi, and T. Suenobu (2008). ChemSusChem 1, 827.

    Article  CAS  Google Scholar 

  22. T. C. Johnson, D. J. Morris, and M. Wills (2010). Chem. Soc. Rev. 39, 81.

    Article  CAS  Google Scholar 

  23. T. P. Rieckborn, E. Huber, E. Karakoc, and M. H. Prosenc (2010). Eur. J. Inorg. Chem. 2010, 4757.

    Article  Google Scholar 

  24. M. R. Columbia, A. M. Crabtree, and P. A. Thiel (1992). J. Am. Chem. Soc. 114, 1231.

    Article  CAS  Google Scholar 

  25. D. A. Bulushev, S. Beloshapkin, and J. R. H. Ross (2010). Catal. Today 154, 7.

    Article  CAS  Google Scholar 

  26. C. Hu, S. W. Ting, K. Y. Chan, and W. Huang (2012). Int. J. Hydrogen Energy 37, 15956.

    Article  CAS  Google Scholar 

  27. A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, and M. Beller (2011). Science 333, 1733.

    Article  CAS  Google Scholar 

  28. S. W. Ting, S. Cheng, K. Y. Tsang, N. van der Laak, and K. Y. Chan (2009). Chem. Commun. 7333.

  29. S. W. Ting, C. Hu, J. K. Pulleri, and K. Y. Chan (2012). Ind. Eng. Chem. Res. 51, 4861.

    Article  CAS  Google Scholar 

  30. C. Hu, S. W. Ting, J. Tsui, and K. Y. Chan (2012). Int. J. Hydrogen Energy 37, 6372.

    Article  CAS  Google Scholar 

  31. K. Tedsree, T. Li, S. Jones, C. W. A. Chan, K. M. K. Yu, P. A. J. Bagot, E. A. Marquis, G. D. W. Smith, and S. C. E. Tsang (2011). Nature Nanotech. 6, 302.

    Article  CAS  Google Scholar 

  32. A. Cuesta, G. Cabello, M. Osawa, and C. Gutiérrez (2012). ACS Catal. 2, 728.

    Article  CAS  Google Scholar 

  33. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl (1995). Science 269, 966.

    Article  CAS  Google Scholar 

  34. D. Golberg, Y. Bando, O. Stephan, and K. Kurashima (1998). Appl. Phys. Lett. 73, 2441.

    Article  CAS  Google Scholar 

  35. J. Beheshtian, H. Behzadi, M. D. Esrafili, B. B. Shirvani, and N. L. Hadipour (2010). Struct. Chem. 21, 903.

    Article  CAS  Google Scholar 

  36. G. Seifert, P. W. Fowler, D. Mitchell, D. Porezag, and T. Frauenheim (1997). Chem. Phys. Lett. 268, 352.

    Article  CAS  Google Scholar 

  37. T. Oku and A. Nishiwaki (2004). Sci. Technol. Adv. Mater. 5, 635.

    Article  CAS  Google Scholar 

  38. C. Tang, Y. Bando, X. Ding, S. Qi, and D. Golberg (2002). J. Am. Chem. Soc. 124, 14550.

    Article  CAS  Google Scholar 

  39. S. H. Jhi and Y. K. Kwon (2004). Phys. Rev. B 69, 245407.

    Article  Google Scholar 

  40. N. Koi and T. Oku (2004). Solid State Commun. 131, 121.

    Article  CAS  Google Scholar 

  41. M. D. Esrafili and R. Nurazar (2014). Appl. Surf. Sci. 314, 90.

    Article  CAS  Google Scholar 

  42. R. J. Baierle, T. M. Schmidt, and A. Fazzio (2007). Solid State Commun. 142, 49.

    Article  CAS  Google Scholar 

  43. Y. J. Cho, C. H. Kim, H. S. Kim, J. Park, H. C. Choi, H. J. Shin, G. Gao, and H. S. Kang (2009). Chem. Mater. 21, 136.

    Article  CAS  Google Scholar 

  44. H. Wu, X. Fan, and J. L. Kuo (2012). Int. J. Hydrogen Energy 37, 14336.

    Article  CAS  Google Scholar 

  45. M. D. Esrafili and R. Nurazar (2014). Superlattices Microst. 67, 54.

    Article  CAS  Google Scholar 

  46. M. D. Esrafili and R. Nurazar (2014). Comput. Mater. Sci. 92, 172.

    Article  CAS  Google Scholar 

  47. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery (1993). J. Comput. Chem. 14, 1347.

    Article  CAS  Google Scholar 

  48. Y. Zhao and D. G. Truhlar (2008). Acc. Chem. Res. 41, 157.

    Article  CAS  Google Scholar 

  49. Y. Zhao and D. G. Truhlar (2008). Theor. Chem. Acc. 120, 215.

    Article  CAS  Google Scholar 

  50. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.

    Article  CAS  Google Scholar 

  51. Y. Chen, H. X. Wang, J. X. Zhao, X. G. Wang, G. H. Cai, Y. H. Ding, and X. Z. Wang (2012). J. Nanopart. Res. 14, 675.

    Article  CAS  Google Scholar 

  52. N. R. Avery, B. H. Toby, A. B. Anton, and W. H. Weinberg (1982). Surface Sci. 122, L574.

    Article  CAS  Google Scholar 

  53. S. Haq, J. G. Love, H. E. Sanders, and D. A. King (1995). Surf. Sci. 325, 230.

    Article  CAS  Google Scholar 

  54. M. D. Esrafili and R. Nurazar (2014). Superlattices Microst. 75, 17.

    Article  CAS  Google Scholar 

  55. X. Zhou, Y. Huang, W. Xing, C. Liu, J. Liao, and T. Lu (2008). Chem. Commun. 3540.

  56. S. Zhou, C. Qian, and X. Chen (2011). Catal. Lett. 141, 726.

    Article  CAS  Google Scholar 

  57. J. L. Davis and M. A. Barteau (1991). Surf. Sci. 256, 50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esrafili, M.D., Nurazar, R. Metal-Free Decomposition of Formic Acid on Pristine and Carbon-Doped Boron Nitride Fullerene: A DFT Study. J Clust Sci 26, 595–608 (2015). https://doi.org/10.1007/s10876-015-0849-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0849-y

Keywords

Navigation