Skip to main content
Log in

Insights into the Structure of Halide-Rich Hydrochloric and Hydrobromic Acid: A Structural and Quantum-Chemical Investigation of the [H6X4O2]2− (X = Cl, Br) Anions

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The previously unknown dianions [H6Cl4O2]2− and [H6Br4O2]2− were prepared as their bis(triphenyl-λ5-phosphanylidene)ammonium ([Ph3PNPPh3]+ ≡ [PNP]+) salts from [PNP]+ halides and aqueous hydrochloric or hydrobromic acid, respectively. The crystal structures of the two salts [PNP]2[H6Cl4O2] and [PNP]2[H6Br4O2] are reported. The unprecedented dianions [H6Cl4O2]2− and [H6Br4O2]2−, which represent a section of the structure of halide-rich hydrochloric or hydrobromic acid, are discussed. Quantum-chemical calculations support the findings. The crystal structure of [PNP][HBr2], a rare example for a crystallographically determined hydrogen dibromide structure, is presented as well.

Graphical Abstract

The dianions [H6Cl4O2]2− and [H6Br4O2]2− were prepared as their [PNP]+ salts and structurally characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoon YK, Carpenter GB (1959) The crystal structure of hydrogen chloride monohydrate. Acta Crystallogr 12(1):17–20

    Article  CAS  Google Scholar 

  2. Lundgren JO, Olovsson I (1967) Hydrogen bond studies. XV. The crystal structure of hydrogen chloride dihydrate. Acta Crystallogr 23(6):966–971

    Article  CAS  Google Scholar 

  3. Lundgren JO, Olovsson I (1967) Hydrogen bond studies. XVI. The crystal structure of chloride trihydrate. Acta Crystallogr 23(6):971–976

    Article  CAS  Google Scholar 

  4. Taesler I, Lundgren JO (1978) Hydrogen bond studies. CXXIX. An X-ray determination of the crystal structure of hydrogen chloride hexahydrate, H9O4+Cl.2H2O. Acta Crystallogr B 34(8):2424–2428

    Article  Google Scholar 

  5. Baer MD, Fulton JL, Balasubramanian M, Schenter GK, Mundy CJ (2014) Persistent ion pairing in aqueous hydrochloric acid. J Phys Chem B 118(26):7211–7220

    Article  CAS  PubMed  Google Scholar 

  6. Fulton JL, Balasubramanian M (2010) Structure of hydronium (H3O+)/chloride (Cl) contact ion pairs in aqueous hydrochloric acid solution: a Zundel-like local configuration. J Am Chem Soc 132(36):12597–12604

    Article  CAS  PubMed  Google Scholar 

  7. Xu J, Izvekov S, Voth GA (2010) Structure and dynamics of concentrated hydrochloric acid solutions. J Phys Chem B 114(29):9555–9562

    Article  CAS  PubMed  Google Scholar 

  8. Kovács A, Varga Z (2006) Halogen acceptors in hydrogen bonding. Coord Chem Rev 250(5):710–727

    Article  CAS  Google Scholar 

  9. Jeffrey GA (2003) Hydrogen-bonding: an update. Crystallogr Rev 9(2–3):135–176

    Article  CAS  Google Scholar 

  10. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Defining the hydrogen bond: an account (IUPAC technical report). Pure Appl Chem 83(8):1619–1636

    Article  CAS  Google Scholar 

  11. Emsley J (1980) Very strong hydrogen bonding. Chem Soc Rev 9(1):91–124

    Article  CAS  Google Scholar 

  12. Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 111(4):2597–2625

    Article  CAS  PubMed  Google Scholar 

  13. Kemp DD, Gordon MS (2010) Aqueous solvation of bihalide anions. J Phys Chem A 114(3):1298–1303

    Article  CAS  PubMed  Google Scholar 

  14. Landrum A, Goldberg G, Hoffmann N R (1997) Bonding in the trihalides (X3), mixed trihalides (X2Y) and hydrogen bihalides (X2H). The connection between hypervalent, electron-rich three-center, donor-acceptor and strong hydrogen bonding. J Chem Soc Dalton Trans 19:3605–3613

    Article  Google Scholar 

  15. Caldwell G, Kebarle P (1985) The hydrogen bond energies of the bihalide ions XHX and YHX. Can J Chem 63(7):1399–1406

    Article  CAS  Google Scholar 

  16. Pivonka NL, Kaposta C, Brümmer M, von Helden G, Meijer G, Wöste L, Neumark DM, Asmis KR (2003) Probing a strong hydrogen bond with infrared spectroscopy: vibrational predissociation of BrHBr·Ar. J Chem Phys 118(12):5275–5278

    Article  CAS  Google Scholar 

  17. Pivonka NL, Kaposta C, von Helden G, Meijer G, Wöste L, Neumark DM, Asmis KR (2002) Gas phase infrared spectroscopy of cluster anions as a function of size: the effect of solvation on hydrogen-bonding in Br·(HBr)1,2,3 clusters. J Chem Phys 117(14):6493–6499

    Article  CAS  Google Scholar 

  18. Ault BS (1982) Matrix isolation investigation of the hydrogen bihalide anions. Acc Chem Res 15(4):103–109

    Article  CAS  Google Scholar 

  19. Grabowski SJ, Ugalde JM, Andrada DM, Frenking G (2016) Comparison of hydrogen and gold bonding in [XHX], [XAuX], and Isoelectronic [NgHNg]+, [NgAuNg]+ (X = halogen, Ng = noble gas). Chem Eur J 22(32):11317–11328

    Article  CAS  PubMed  Google Scholar 

  20. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The cambridge structural database. Acta Crystallogr B 72:171–179

    Article  CAS  Google Scholar 

  21. Farnham WB, Dixon DA, Middleton WJ, Calabrese JC, Harlow RL, Whitney JF, Jones GA, Guggenberger LJ (1987) The crystal and molecular structure of tris(substituted amino) sulfonium ions. J Am Chem Soc 109(2):476–483

    Article  CAS  Google Scholar 

  22. Lork E, Viets D, Müller M, Mews R (2004) Bis(dimethylamino)trifluoromethylsulfonium salze: [CF3S(NMe2)2]+[Me3SiF2], [CF3S(NMe2)2]+[HF2] und [CF3S(NMe2)2]+[CF3S]. Z Anorg Allg Chem 630(15):2692–2696

    Article  CAS  Google Scholar 

  23. Troyanov SI, Morozov IV, Kemnitz E (2005) Crystal structure of cesium dihydrotrifluoride, CsH2F3. Refinement of the crystal structures of NMe4HF2 and NMe4H2F3. Z Anorg Allg Chem 631(9):1651–1654

    Article  CAS  Google Scholar 

  24. Atwood JL, Bott SG, Means CM, Coleman AW, Zhang H, May MT (1990) Synthesis of salts of the hydrogen dichloride anion in aromatic solvents. 2. Syntheses and crystal structures of [K·18-crown-6][Cl-H-Cl], [Mg·18-crown-6][Cl-H-Cl]2, [H3O·18-crown-6][Cl-H-Cl], and the related [H3O·18-crown-6][Br-H-Br]. Inorg Chem 29(3):467–470

    Article  CAS  Google Scholar 

  25. Bertocco P, Bolli C, Correia Bicho BA, Jenne C, Erken B, Laitinen RS, Seeger HA, Takaluoma TT (2016) Theoretical and synthetic study on the existence, structures, and bonding of the halide-bridged [B2X7] (X = F, Cl, Br, I) anions. Inorg Chem 55(7):3599–3604

    Article  CAS  PubMed  Google Scholar 

  26. Paul USD, Radius U (2017) Ligand versus complex: C–F and C–H bond activation of polyfluoroaromatics at a cyclic (Alkyl)(Amino)carbene. Chem Eur J 23(16):3993–4009

    Article  CAS  PubMed  Google Scholar 

  27. Müller U, Dörner H-D (1982) Eine neue Synthese, das Schwingungsspektrum und die Kristallstruktur von Tetraphenylarsonium-hydrogendichlorid As(C6H5)4[Cl2H]. Z Naturforsch 37B(2):198–200

    Article  Google Scholar 

  28. Schroeder LW, Ibers JA (1968) Bihalide ions ClHCl and BrHBr. Crystal structures of cesium chloride-1/3-(hydronium bichloride) and cesium bromide-1/3-(hydronium bromide). Inorg Chem 7(3):594–599

    Article  CAS  Google Scholar 

  29. Driver GW, Mutikainen I (2011) The complex story of a simple bronsted acid: unusual speciation of HBr in an ionic liquid medium. Dalton Trans 40(41):10801–10803

    Article  CAS  PubMed  Google Scholar 

  30. Gellhaar J, Knapp C (2011) Bis(triphenyl-λ5-phosphanylidene)ammonium hydrogen dichloride. Acta Crystallogr Sect E 67(10):o2546

    Article  CAS  Google Scholar 

  31. Knapp C, Uzun R (2010) Bis(triphenylphosphine)iminium bromide acetonitrile monosolvate. Acta Crystallogr E 66:o3186

    Article  CAS  Google Scholar 

  32. Knapp C, Uzun R (2010) Solvate-free bis(triphenylphosphine)iminium chloride. Acta Crystallogr E 66:o3185

    Article  CAS  Google Scholar 

  33. Bolli C, Gellhaar J, Jenne C, Keßler M, Scherer H, Seeger H, Uzun R (2014) Bis (triphenyl-λ5-phosphanylidene) ammonium fluoride: a reactive fluoride source to access the hypervalent silicates [MenSiF5−n]- (n= 0–3). Dalton Trans 43(11):4326–4334

    Article  CAS  PubMed  Google Scholar 

  34. Price CJ, Chen H-Y, Launer LM, Miller SA (2009) Weakly coordinating cations as alternatives to weakly coordinating anions. Angew Chem Int Ed 48(5):956–959

    Article  CAS  Google Scholar 

  35. Zhang B, Li S, Cokoja M, Herdtweck E, Mink J, Zang S-L, Herrmann WA, Kühn FE (2014) Ion pairs of weakly coordinating cations and anions: synthesis and application for sulfide to sulfoxide oxidations. Z Naturforsch 69B(11–12):1149–1163

    Article  Google Scholar 

  36. Mann L, Hornberger E, Steinhauer S, Riedel S (2018) Further development of weakly coordinating cations: fluorinated Bis(triarylphosphoranylidene)iminium salts. Chem Eur J 24(15):3902–3908

    Article  CAS  PubMed  Google Scholar 

  37. Himmel D, Goll SK, Leito I, Krossing I (2012) Bulk gas-phase acidity. Chem Eur J 18(30):9333–9340

    Article  CAS  PubMed  Google Scholar 

  38. Botti A, Bruni F, Imberti S, Ricci MA, Soper AK (2004) Ions in water: the microscopic structure of a concentrated HCl solution. J Chem Phys 121(16):7840–7848

    Article  CAS  PubMed  Google Scholar 

  39. Agmon N (1998) Structure of Concentrated HCl Solutions. J Phys Chem A 102(1):192–199

    Article  CAS  Google Scholar 

  40. Martinsen A, Songstad J (1977) Preparation and properties of some Bis(triphenylphosphine)iminium salts, [(Ph3P)2N]X. Acta Chem Scand 31A:645–650

    Article  Google Scholar 

  41. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64(1):112–122

    Article  CAS  PubMed  Google Scholar 

  42. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42(2):339–341

    Article  CAS  Google Scholar 

  43. Sheldrick G (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71(1):3–8

    Article  CAS  Google Scholar 

  44. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170

    Article  CAS  Google Scholar 

  45. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  PubMed  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. A.03. Wallingford, CT

  47. Chemcraft—graphical software for visualization of quantum chemistry computations. Retrieved from https://www.chemcraftprog.com

  48. Tebbe KF, Krauss N (1990) Bis(triphenylphosphin)iminium-triiodid. Acta Crystallogr C 46(5):878–880

    Article  Google Scholar 

  49. Lewis GR, Dance I (2000) Crystal supramolecularity. Multiple phenyl embraces by [PPN]+ cations. J Chem Soc Dalton Trans (3):299–306

  50. Schröder D (2004) Coulomb explosions and stability of multiply charged ions in the gas phase. Angew Chem Int Ed 43(11):1329–1331

    Article  CAS  Google Scholar 

  51. Knapp C, Schulz C (2009) How to overcome Coulomb explosions in labile dications by using the [B12Cl12]2– dianion. Chem Commun 33:4991–4993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.N. acknowledges financial support by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Jenne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3032 KB)

Supplementary Material

Supplementary Material

CCDC-1882464 ([PNP][HBr2]), 1882463 ([PNP]2[H6Cl4O2]), and 1882465 ([PNP]2[H6Br4O2]) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK). Further supplementary material (synthetic details, quantum-chemical calculations) is available in PDF format.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertocco, P., Bolli, C., Correia Bicho, B.A. et al. Insights into the Structure of Halide-Rich Hydrochloric and Hydrobromic Acid: A Structural and Quantum-Chemical Investigation of the [H6X4O2]2− (X = Cl, Br) Anions. J Chem Crystallogr 50, 69–76 (2020). https://doi.org/10.1007/s10870-019-00773-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-019-00773-w

Keywords

Navigation