Skip to main content
Log in

Mitochondrial phospholipids: role in mitochondrial function

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

An Erratum to this article was published on 17 March 2015

Abstract

Mitochondria are essential components of eukaryotic cells and are involved in a diverse set of cellular processes that include ATP production, cellular signalling, apoptosis and cell growth. These organelles are thought to have originated from a symbiotic relationship between prokaryotic cells in an effort to provide a bioenergetic jump and thus, the greater complexity observed in eukaryotes (Lane and Martin 2010). Mitochondrial processes are required not only for the maintenance of cellular homeostasis, but also allow cell to cell and tissue to tissue communication (Nunnari and Suomalainen 2012). Mitochondrial phospholipids are important components of this system. Phospholipids make up the characteristic outer and inner membranes that give mitochondria their shape. In addition, these membranes house sterols, sphingolipids and a wide variety of proteins. It is the phospholipids that also give rise to other characteristic mitochondrial structures such as cristae (formed from the invaginations of the inner mitochondrial membrane), the matrix (area within cristae) and the intermembrane space (IMS) which separates the outer mitochondrial membrane (OMM) and inner mitochondrial membrane (IMM). Phospholipids are the building blocks that make up these structures. However, the phospholipid composition of the OMM and IMM is unique in each membrane. Mitochondria are able to synthesize some of the phospholipids it requires, but the majority of cellular lipid biosynthesis takes place in the endoplasmic reticulum (ER) in conjunction with the Golgi apparatus (Fagone and Jackowski 2009). In this review, we will focus on the role that mitochondrial phospholipids play in specific cellular functions and discuss their biosynthesis, metabolism and transport as well as the differences between the OMM and IMM phospholipid composition. Finally, we will focus on the human diseases that result from disturbances to mitochondrial phospholipids and the current research being performed to help us gain a better understanding of their function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acehan D, Xu Y, Stokes DL, Schlame M (2007) Comparison of lymphoblast mitochondria from normal subjects and patients with Barth syndrome using electron microscopic tomography. Lab Investig 87(1):40–48

    Article  CAS  Google Scholar 

  • Ades LC, Gedeon AK, Wilson MJ, Latham M, Partington MW, Mulley JC et al (1993) Barth syndrome: clinical features and confirmation of gene localisation to distal Xq28. Am J Med Genet 45(3):327–334

    Article  CAS  Google Scholar 

  • Agassandian M, Mallampalli RK (2013) Surfactant phospholipid metabolism. Biochim Biophys Acta 1831(3):612–625

    Article  CAS  Google Scholar 

  • Antonsson B (1997) Phosphatidylinositol synthase from mammalian tissues. Biochim Biophys Acta 1348(1–2):179–186

    Article  CAS  Google Scholar 

  • Aoyama C, Liao H, Ishidate K (2004) Structure and function of choline kinase isoforms in mammalian cells. Prog Lipid Res 43(3):266–281

    Article  CAS  Google Scholar 

  • Ardail D, Privat JP, Egret-Charlier M, Levrat C, Lerme F, Louisot P (1990) Mitochondrial contact sites. Lipid composition and dynamics. J Biol Chem 265(31):18797–18802

    CAS  Google Scholar 

  • Athenstaedt K, Daum G (1999) Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem 266(1):1–16

    Article  CAS  Google Scholar 

  • Barth PG, Scholte HR, Berden JA, Van der Klei-Van Moorsel JM, Luyt-Houwen IE, van der Harten JJ et al (1983) An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 62(1-3):327–355

    Article  CAS  Google Scholar 

  • Becker T, Horvath SE, Bottinger L, Gebert N, Daum G, Pfanner N (2013) Role of phosphatidylethanolamine in the biogenesis of mitochondrial outer membrane proteins. J Biol Chem 288(23):16451–16459

    Article  CAS  Google Scholar 

  • Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5(12):1051–1061

    Article  CAS  Google Scholar 

  • Bolhuis PA, Hensels GW, Hulsebos TJ, Baas F, Barth PG (1991) Mapping of the locus for X-linked cardioskeletal myopathy with neutropenia and abnormal mitochondria (Barth syndrome) to Xq28. Am J Hum Genet 48(3):481–485

    CAS  Google Scholar 

  • Bottinger L, Horvath SE, Kleinschroth T, Hunte C, Daum G, Pfanner N et al (2012) Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J Mol Biol 423(5):677–686

    Article  CAS  Google Scholar 

  • Cai J, Abramovici H, Gee SH, Topham MK (2009) Diacylglycerol kinases as sources of phosphatidic acid. Biochim Biophys Acta 1791(9):942–948

    Article  CAS  Google Scholar 

  • Cao J, Liu Y, Lockwood J, Burn P, Shi Y (2004) A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. J Biol Chem 279(30):31727–31734

    Article  CAS  Google Scholar 

  • Chen S, Tarsio M, Kane PM, Greenberg ML (2008) Cardiolipin mediates cross-talk between mitochondria and the vacuole. Mol Biol Cell 19(12):5047–5058

    Article  CAS  Google Scholar 

  • Cheng P, Hatch GM (1995) Inhibition of cardiolipin biosynthesis in the hypoxic rat heart. Lipids 30(6):513–519

    Article  CAS  Google Scholar 

  • Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8(11):1255–1262

    Article  CAS  Google Scholar 

  • Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA et al (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15(10):1197–1205

    Article  CAS  Google Scholar 

  • Cockcroft S (2001) Signalling roles of mammalian phospholipase D1 and D2. Cell Mol Life Sci 58(11):1674–1687

    Article  CAS  Google Scholar 

  • Cole LK, Vance JE, Vance DE (2012) Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta 1821(5):754–761

    Article  CAS  Google Scholar 

  • Daum G, Vance JE (1997) Import of lipids into mitochondria. Prog Lipid Res 36(2–3):103–130

    Article  CAS  Google Scholar 

  • de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B (1997) Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane? Biochim Biophys Acta 1325(1):108–116

    Article  Google Scholar 

  • Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879

    Article  CAS  Google Scholar 

  • Dudek J, Cheng IF, Balleininger M, Vaz FM, Streckfuss-Bomeke K, Hubscher D et al (2013) Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res 11(2):806–819

    Article  CAS  Google Scholar 

  • Eddy EM (1975) Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43:229–280

    Article  CAS  Google Scholar 

  • Fagone P, Jackowski S (2009) Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res 50:S311–S316

    Article  CAS  Google Scholar 

  • Gaigg B, Simbeni R, Hrastnik C, Paltauf F, Daum G (1995) Characterization of a microsomal subfraction associated with mitochondria of the yeast, Saccharomyces cerevisiae. Involvement in synthesis and import of phospholipids into mitochondria. Biochim Biophys Acta 1234(2):214–220

    Article  Google Scholar 

  • Gasparre, G., Porcelli, A. M., Lenaz, G., Romeo G. (2013) Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring Harb Perspect. Biol. 5(2), 10.1101/cshperspect.a011411

  • Gebert N, Joshi AS, Kutik S, Becker T, McKenzie M, Guan XL et al (2009) Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Curr Biol 19(24):2133–2139

    Article  CAS  Google Scholar 

  • Gimeno RE, Cao J (2008) Thematic review series: glycerolipids. Mammalian glycerol-3-phosphate acyltransferases: new genes for an old activity. J Lipid Res 49(10):2079–2088

    Article  CAS  Google Scholar 

  • Gohil VM, Thompson MN, Greenberg ML (2005) Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae. J Biol Chem 280(42):35410–35416

    Article  CAS  Google Scholar 

  • Gomez LA, Hagen TM (2012) Age-related decline in mitochondrial bioenergetics: does supercomplex destabilization determine lower oxidative capacity and higher superoxide production? Semin Cell Dev Biol 23(7):758–767

    Article  CAS  Google Scholar 

  • Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJ et al (2008) Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol 183(4):681–696

    Article  CAS  Google Scholar 

  • Gonzalvez F, D′Aurelio M, Boutant M, Moustapha A, Puech JP, Landes T et al (2013) Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochim Biophys Acta 1832(8):1194–1206

    Article  CAS  Google Scholar 

  • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK et al (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141(4):656–667

    Article  CAS  Google Scholar 

  • Hallman M, Gluck L (1976) Phosphatidylglycerol in lung surfactant. III. Possible modifier of surfactant function. J Lipid Res 17(3):257–262

    CAS  Google Scholar 

  • Hatch GM (1994) Cardiolipin biosynthesis in the isolated heart. Biochem J 297(Pt 1):201–208

    Article  CAS  Google Scholar 

  • Hatch GM (2004) Cell biology of cardiac mitochondrial phospholipids. Biochem Cell Biol 82(1):99–112

    Article  CAS  Google Scholar 

  • Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52(4):590–614

    Article  CAS  Google Scholar 

  • Hostetler, K. Y. (1982) In Polyglycerophospholipids: phosphatidylglycerol, diphosphatidylglycerol and bis (monoacylglycero) phosphate; Hawthorne, J. N., Ansell, G. B., Eds.; Phospholipids; pp 215

  • Hostetler KY, van den Bosch H (1972) Subcellular and submitochondrial localization of the biosynthesis of cardiolipin and related phospholipids in rat liver. Biochim Biophys Acta 260(3):380–386

    Article  CAS  Google Scholar 

  • Hostetler KY, Van den Bosch H, Van Deenen LL (1971) Biosynthesis of cardiolipin in liver mitochondria. Biochim Biophys Acta 239(1):113–119

    Article  CAS  Google Scholar 

  • Hostetler KY, Galesloot JM, Boer P, Van Den Bosch H (1975) Further studies on the formation of cardiolipin and phosphatidylglycerol in rat liver mitochondria. Effect of divalent cations and the fatty acid composition of CDP-diglyceride. Biochim Biophys Acta 380(3):382–389

    Article  CAS  Google Scholar 

  • Hostetler KY, Zenner BD, Morris HP (1978) Altered subcellular and submitochondrial localization of CTP:phosphatidate cytidylyltransferase in the Morris 7777 hepatoma. J Lipid Res 19(5):553–560

    CAS  Google Scholar 

  • Houtkooper RH, Akbari H, van Lenthe H, Kulik W, Wanders RJ, Frentzen M et al (2006) Identification and characterization of human cardiolipin synthase. FEBS Lett 580(13):3059–3064

    Article  CAS  Google Scholar 

  • Hovius R, Thijssen J, van der Linden P, Nicolay K, de Kruijff B (1993) Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane. FEBS Lett 330(1):71–76

    Article  CAS  Google Scholar 

  • Huang H, Gao Q, Peng X, Choi SY, Sarma K, Ren H et al (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20(3):376–387

    Article  CAS  Google Scholar 

  • Janssen MJ, van Voorst F, Ploeger GE, Larsen PM, Larsen MR, de Kroon AI et al (2002) Photolabeling identifies an interaction between phosphatidylcholine and glycerol-3-phosphate dehydrogenase (Gut2p) in yeast mitochondria. Biochemistry 41(18):5702–5711

    Article  CAS  Google Scholar 

  • Joshi AS, Thompson MN, Fei N, Huttemann M, Greenberg ML (2012) Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem 287(21):17589–17597

    Article  CAS  Google Scholar 

  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA et al (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1(4):223–232

    Article  CAS  Google Scholar 

  • Kandasamy P, Zarini S, Chan ED, Leslie CC, Murphy RC, Voelker DR (2011) Pulmonary surfactant phosphatidylglycerol inhibits Mycoplasma pneumoniae-stimulated eicosanoid production from human and mouse macrophages. J Biol Chem 286(10):7841–7853

    Article  CAS  Google Scholar 

  • Kennedy EP, Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem 222(1):193–214

    CAS  Google Scholar 

  • Kim YJ, Guzman-Hernandez ML, Balla T (2011) A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev Cell 21(5):813–824

    Article  CAS  Google Scholar 

  • Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778(10):1978–2021

    Article  CAS  Google Scholar 

  • Kooijman EE, Carter KM, van Laar EG, Chupin V, Burger KN, de Kruijff B (2005) What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so special? Biochemistry 44(51):17007–17015

    Article  CAS  Google Scholar 

  • Kornmann B (2013) The molecular hug between the ER and the mitochondria. Curr Opin Cell Biol 25(4):443–448

    Article  CAS  Google Scholar 

  • Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS et al (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325(5939):477–481

    Article  CAS  Google Scholar 

  • Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111(9):1208–1221

    Article  CAS  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R et al (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111(3):331–342

    Article  CAS  Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934

    Article  CAS  Google Scholar 

  • Lee HC, Inoue T, Sasaki J, Kubo T, Matsuda S, Nakasaki Y et al (2012) LPIAT1 regulates arachidonic acid content in phosphatidylinositol and is required for cortical lamination in mice. Mol Biol Cell 23(24):4689–4700

    Article  CAS  Google Scholar 

  • Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39:407–427

    Article  CAS  Google Scholar 

  • Li Y, Zou W, Yan Q, Xu Y, Xia Q, Tsui Z et al (2009) Over-expression of pemt2 into rat hepatoma cells contributes to the mitochondrial apoptotic pathway. IUBMB Life 61(8):846–852

    Article  CAS  Google Scholar 

  • Li J, Romestaing C, Han X, Li Y, Hao X, Wu Y et al (2010) Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab 12(2):154–165

    Article  CAS  Google Scholar 

  • Lu B, Jiang YJ, Man MQ, Brown B, Elias PM, Feingold KR (2005) Expression and regulation of 1-acyl-sn-glycerol- 3-phosphate acyltransferases in the epidermis. J Lipid Res 46(11):2448–2457

    Article  CAS  Google Scholar 

  • Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2(10):754–761

    Article  CAS  Google Scholar 

  • Mancuso DJ, Sims HF, Han X, Jenkins CM, Guan SP, Yang K et al (2007) Genetic ablation of calcium-independent phospholipase A2gamma leads to alterations in mitochondrial lipid metabolism and function resulting in a deficient mitochondrial bioenergetic phenotype. J Biol Chem 282(48):34611–34622

    Article  CAS  Google Scholar 

  • Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19(13):1469–1480

    Article  CAS  Google Scholar 

  • Martin J, Mahlke K, Pfanner N (1991) Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences. J Biol Chem 266(27):18051–18057

    CAS  Google Scholar 

  • McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in barth syndrome patients. J Mol Biol 361(3):462–469

    Article  CAS  Google Scholar 

  • Mejia, E. M., Nguyen, H., Hatch, G. M. (2013) Mammalian cardiolipin biosynthesis. Chem. Phys. Lipids

  • Mitsuhashi S, Ohkuma A, Talim B, Karahashi M, Koumura T, Aoyama C et al (2011) A congenital muscular dystrophy with mitochondrial structural abnormalities caused by defective de novo phosphatidylcholine biosynthesis. Am J Hum Genet 88(6):845–851

    Article  CAS  Google Scholar 

  • Muralikrishna Adibhatla R, Hatcher JF (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med 40(3):376–387

    Article  CAS  Google Scholar 

  • Nebauer R, Rosenberger S, Daum G (2007) Phosphatidylethanolamine, a limiting factor of autophagy in yeast strains bearing a defect in the carboxypeptidase Y pathway of vacuolar targeting. J Biol Chem 282(23):16736–16743

    Article  CAS  Google Scholar 

  • Nikawa J, Yamashita S (1997) Phosphatidylinositol synthase from yeast. Biochim Biophys Acta 1348(1–2):173–178

    Article  CAS  Google Scholar 

  • Nowicki M, Muller F, Frentzen M (2005) Cardiolipin synthase of Arabidopsis thaliana. FEBS Lett 579(10):2161–2165

    Article  CAS  Google Scholar 

  • Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159

    Article  CAS  Google Scholar 

  • Oliveira TG, Di Paolo G (2010) Phospholipase D in brain function and Alzheimer′s disease. Biochim Biophys Acta 1801(8):799–805

    Article  CAS  Google Scholar 

  • Osman C, Voelker DR, Langer T (2011) Making heads or tails of phospholipids in mitochondria. J Cell Biol 192(1):7–16

    Article  CAS  Google Scholar 

  • Ostrander DB, Zhang M, Mileykovskaya E, Rho M, Dowhan W (2001) Lack of mitochondrial anionic phospholipids causes an inhibition of translation of protein components of the electron transport chain. A yeast genetic model system for the study of anionic phospholipid function in mitochondria. J Biol Chem 276(27):25262–25272

    Article  CAS  Google Scholar 

  • Pagac M, de la Mora HV, Duperrex C, Roubaty C, Vionnet C, Conzelmann A (2011) Topology of 1-acyl-sn-glycerol-3-phosphate acyltransferases SLC1 and ALE1 and related membrane-bound O-acyltransferases (MBOATs) of Saccharomyces cerevisiae. J Biol Chem 286(42):36438–36447

    Article  CAS  Google Scholar 

  • Pagac M, Vazquez HM, Bochud A, Roubaty C, Knopfli C, Vionnet C et al (2012) Topology of the microsomal glycerol-3-phosphate acyltransferase Gpt2p/Gat1p of Saccharomyces cerevisiae. Mol Microbiol 86(5):1156–1166

    Article  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2011) Mitochondrial dysfunction in brain aging: role of oxidative stress and cardiolipin. Neurochem Int 58(4):447–457

    Article  CAS  Google Scholar 

  • Paulus H, Kennedy EP (1960) The enzymatic synthesis of inositol monophosphatide. J Biol Chem 235:1303–1311

    CAS  Google Scholar 

  • Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML et al (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278(52):52873–52880

    Article  CAS  Google Scholar 

  • Powers C, Huang Y, Strauss A, Khuchua Z (2013) Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice. Front Physiol 4:74

    Article  CAS  Google Scholar 

  • Riekhof WR, Wu J, Jones JL, Voelker DR (2007) Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in Saccharomyces cerevisiae. J Biol Chem 282(39):28344–28352

    Article  CAS  Google Scholar 

  • Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W et al (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80(1):30–39

    Article  CAS  Google Scholar 

  • Rosivatz E, Woscholski R (2011) Removal or masking of phosphatidylinositol (4,5) bisphosphate from the outer mitochondrial membrane causes mitochondrial fragmentation. Cell Signal 23(2):478–486

    Article  CAS  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17(6):1675–1687

    Article  CAS  Google Scholar 

  • Scapa EF, Pocai A, Wu MK, Gutierrez-Juarez R, Glenz L, Kanno K et al (2008) Regulation of energy substrate utilization and hepatic insulin sensitivity by phosphatidylcholine transfer protein/StarD2. FASEB J 22(7):2579–2590

    Article  CAS  Google Scholar 

  • Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19(8):1777–1783

    Article  CAS  Google Scholar 

  • Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199(2):223–231

    Article  CAS  Google Scholar 

  • Schlame M (2008) Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res 49(8):1607–1620

    Article  CAS  Google Scholar 

  • Schlame M, Haldar D (1993) Cardiolipin is synthesized on the matrix side of the inner membrane in rat liver mitochondria. J Biol Chem 268(1):74–79

    CAS  Google Scholar 

  • Schon EA (2007) Gene products present in mitochondria of yeast and animal cells. Methods Cell Biol 80:835–876

    Article  Google Scholar 

  • Schuiki I, Daum G (2009) Phosphatidylserine decarboxylases, key enzymes of lipid metabolism. IUBMB Life 61(2):151–162

    Article  CAS  Google Scholar 

  • Seleznev K, Zhao C, Zhang XH, Song K, Ma ZA (2006) Calcium-independent phospholipase A2 localizes in and protects mitochondria during apoptotic induction by staurosporine. J Biol Chem 281(31):22275–22288

    Article  CAS  Google Scholar 

  • Shiao YJ, Lupo G, Vance JE (1995) Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine. J Biol Chem 270(19):11190–11198

    Article  CAS  Google Scholar 

  • Shinzawa-Itoh K, Aoyama H, Muramoto K, Terada H, Kurauchi T, Tadehara Y et al (2007) Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J 26(6):1713–1725

    Article  CAS  Google Scholar 

  • Simbeni R, Pon L, Pon L, Zinser E, Paltauf F, Daum G (1991) Mitochondrial membrane contact sites of yeast. Characterization of lipid components and possible involvement in intramitochondrial translocation of phospholipids. J Biol Chem 266(16):10047–10049

    CAS  Google Scholar 

  • Steenbergen R, Nanowski TS, Beigneux A, Kulinski A, Young SG, Vance JE (2005) Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects. J Biol Chem 280(48):40032–40040

    Article  CAS  Google Scholar 

  • Stegner D, Thielmann I, Kraft P, Frohman MA, Stoll G, Nieswandt B (2013) Pharmacological inhibition of phospholipase D protects mice from occlusive thrombus formation and ischemic stroke–brief report. Arterioscler Thromb Vasc Biol 33(9):2212–2217

    Article  CAS  Google Scholar 

  • Su X, Dowhan W (2006) Translational regulation of nuclear gene COX4 expression by mitochondrial content of phosphatidylglycerol and cardiolipin in Saccharomyces cerevisiae. J Mol Cell Biol 26(3):743–753

    Article  CAS  Google Scholar 

  • Sundler R, Akesson B (1975) Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J Biol Chem 250(9):3359–3367

    CAS  Google Scholar 

  • Sundler R, Akesson B, Nilsson A (1974) Quantitative role of base exchange in phosphatidylethanolamine synthesis in isolated rat hepatocytes. FEBS Lett 43(3):303–307

    Article  CAS  Google Scholar 

  • Tamura Y, Harada Y, Yamano K, Watanabe K, Ishikawa D, Ohshima C et al (2006) Identification of Tam41 maintaining integrity of the TIM23 protein translocator complex in mitochondria. J Cell Biol 174(5):631–637

    Article  CAS  Google Scholar 

  • Tamura Y, Onguka O, Hobbs AE, Jensen RE, Iijima M, Claypool SM et al (2012) Role for two conserved intermembrane space proteins, Ups1p and Ups2p, [corrected] in intra-mitochondrial phospholipid trafficking. J Biol Chem 287(19):15205–15218

    Article  CAS  Google Scholar 

  • Tamura Y, Harada Y, Nishikawa S, Yamano K, Kamiya M, Shiota T et al (2013) Tam41 Is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. Cell Metab 17(5):709–718

    Article  CAS  Google Scholar 

  • Tanaka T, Iwawaki D, Sakamoto M, Takai Y, Morishige J, Murakami K et al (2003) Mechanisms of accumulation of arachidonate in phosphatidylinositol in yellowtail. A comparative study of acylation systems of phospholipids in rat and the fish species Seriola quinqueradiata. Eur J Biochem 270(7):1466–1473

    Article  CAS  Google Scholar 

  • Tasseva G, Bai HD, Davidescu M, Haromy A, Michelakis E, Vance JE (2013) Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J Biol Chem 288(6):4158–4173

    Article  CAS  Google Scholar 

  • Taylor WA, Hatch GM (2009) Identification of the human mitochondrial linoleoyl-coenzyme A monolysocardiolipin acyltransferase (MLCL AT-1). J Biol Chem 284(44):30360–30371

    Article  CAS  Google Scholar 

  • Tolias KF, Cantley LC (1999) Pathways for phosphoinositide synthesis. Chem Phys Lipids 98(1–2):69–77

    Article  CAS  Google Scholar 

  • Trotter PJ, Voelker DR (1995) Identification of a non-mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast Saccharomyces cerevisiae. J Biol Chem 270(11):6062–6070

    Article  CAS  Google Scholar 

  • Trotter PJ, Pedretti J, Voelker DR (1993) Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele. J Biol Chem 268(28):21416–21424

    CAS  Google Scholar 

  • Trotter PJ, Pedretti J, Yates R, Voelker DR (1995) Phosphatidylserine decarboxylase 2 of Saccharomyces cerevisiae. Cloning and mapping of the gene, heterologous expression, and creation of the null allele. J Biol Chem 270(11):6071–6080

    Article  CAS  Google Scholar 

  • van den Brink-Van Der Laan E, Killian JA, de Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666(1-2):275–288

    Article  CAS  Google Scholar 

  • van Golde LM, Oldenborg V, Post M, Batenburg JJ, Poorthuis BJ, Wirtz KW (1980) Phospholipid transfer proteins in rat lung. Identification of a protein specific for phosphatidylglycero. J Biol Chem 255(13):6011–6013

    Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  CAS  Google Scholar 

  • Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265(13):7248–7256

    CAS  Google Scholar 

  • Vance JE (1991) Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum. J Biol Chem 266(1):89–97

    CAS  Google Scholar 

  • Vance JE (2008) Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res 49(7):1377–1387

    Article  CAS  Google Scholar 

  • Vance DE (2013) Physiological roles of phosphatidylethanolamine N-methyltransferase. Biochim Biophys Acta 1831(3):626–632

    Article  CAS  Google Scholar 

  • Vance JE, Tasseva G (2013) Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta 1831(3):543–554

    Article  CAS  Google Scholar 

  • Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. Protein Cell 4(8):582–590

    Article  CAS  Google Scholar 

  • Voelker DR (1989) Phosphatidylserine translocation to the mitochondrion is an ATP-dependent process in permeabilized animal cells. Proc Natl Acad Sci U S A 86(24):9921–9925

    Article  CAS  Google Scholar 

  • Vreken P, Valianpour F, Nijtmans LG, Grivell LA, Plecko B, Wanders RJ et al (2000) Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Commun 279(2):378–382

    Article  CAS  Google Scholar 

  • Wang WJ, Baez JM, Maurer R, Dansky HM, Cohen DE (2006) Homozygous disruption of Pctp modulates atherosclerosis in apolipoprotein E-deficient mice. J Lipid Res 47(11):2400–2407

    Article  CAS  Google Scholar 

  • Wirtz KW (1991) Phospholipid transfer proteins. Annu Rev Biochem 60:73–99

    Article  CAS  Google Scholar 

  • Wittig I, Braun HP, Schagger H (2006) Blue native page. Nat Protoc 1(1):418–428

    Article  CAS  Google Scholar 

  • Wu WI, Voelker DR (2001) Characterization of phosphatidylserine transport to the locus of phosphatidylserine decarboxylase 2 in permeabilized yeast. J Biol Chem 276(10):7114–7121

    Article  CAS  Google Scholar 

  • Xu Y, Malhotra A, Ren M, Schlame M (2006) The enzymatic function of tafazzin. J Biol Chem 281(51):39217–39224

    Article  CAS  Google Scholar 

  • Yang CY, Frohman MA (2012) Mitochondria: signaling with phosphatidic acid. Int J Biochem Cell Biol 44(8):1346–1350

    Article  CAS  Google Scholar 

  • Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277(46):43553–43556

    Article  CAS  Google Scholar 

  • Zhang M, Mileykovskaya E, Dowhan W (2005) Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem 280(33):29403–29408

    Article  CAS  Google Scholar 

  • Zhang J, Guan Z, Murphy AN, Wiley SE, Perkins GA, Worby CA et al (2011a) Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab 13(6):690–700

    Article  CAS  Google Scholar 

  • Zhang J, Guan Z, Murphy AN, Wiley SE, Perkins GA, Worby CA et al (2011b) Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab 13(6):690–700

    Article  CAS  Google Scholar 

  • Zinser E, Sperka-Gottlieb CD, Fasch EV, Kohlwein SD, Paltauf F, Daum G (1991) Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol 173(6):2026–2034

    CAS  Google Scholar 

Download references

Acknowledgments

Supported by funding from the Heart and Stroke Foundation of Canada, Canadian Institutes of Health Research and the National Sciences and Engineering Research Council. G.M.H. is the Canada Research Chair in Molecular Cardiolipin Metabolism. We thank Dr. Donald Smyth for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant M. Hatch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejia, E.M., Hatch, G.M. Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr 48, 99–112 (2016). https://doi.org/10.1007/s10863-015-9601-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9601-4

Keywords

Navigation