Skip to main content
Log in

Nanoscale cationic micelles of amphiphilic copolymers based on star-shaped PLGA and PEI cross-linked PEG for protein delivery application

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To enhance the bioavailability of protein therapeutants and improve the stability of storage and delivery, a series of branched amphiphilic block copolymers consisting of cholic acid (CA) initiated poly(D,L-lactide-co-glycolide) (CA-PLGA) and water-soluble polyethyleneimine cross-linked polyethylene glycol (PEI-PEG) denoted as CA-PLGA-b-(PEI-PEG) were synthesized and characterized. CA-PLGA-b-(PEI-PEG) presented low cytotoxicity by MTT and cck-8 assay. The cationic CA-PLGA-b-(PEI-PEG) micelles (diameter about 100 nm and zeta potential 34–61 mV) were prepared through self-assembly method, and complexed with insulin via electrostatic interaction to obtain nanoscale micelle/insulin complexes. The micelle/insulin complexes-loaded CA-PLGA microspheres (MIC-MS, 10.4 ± 3.85 μm) were manufactured by employing a double emulsion (W1/O/W2) method. The in vitro insulin release behavior and in vivo hypoglycaemic effect of MIC-MS on streptozotocin (STZ) induced diabetic rats were compared with those of the insulin-loaded CA-PLGA microspheres (INS-MS, 7.8 ± 2.57 μm). The initial burst in vitro release of MIC-MS was markedly lower than that of INS-MS (P < 0.01), and the pharmacological availability of MIC-MS via subcutaneous administration was 148.9% relative to INS-MS. Therefore, the cationic CA-PLGA-b-(PEI-PEG) micelles can effectively increase the bioavailability of insulin in CA-PLGA microspheres and can be considered as a potential protein carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zheng C, Zhang XG, Sun L, Zhang ZP, Li CX. Biodegradable and redox-responsive chitosan/poly(l-aspartic acid) submicron capsules for transmucosal delivery of proteins and peptides. J Mater Sci Mater Med. 2013;24:931–9.

    Article  CAS  Google Scholar 

  2. Begarani F, Cassano D, Margheritis E, Marotta R, Cardarelli F, Voliani V. Silica-based nanoparticles for protein encapsulation and delivery. Nanomaterials. 2018;8:886.

    Article  Google Scholar 

  3. Lim H-P, Tey B-T, Chan E-S. Particle designs for the stabilization and controlled-delivery of protein drugs by biopolymers: a case study on insulin. J Control Release. 2014;186:11–21.

    Article  CAS  Google Scholar 

  4. Lale SV, Gill HS. Pollen grains as a novel microcarrier for oral delivery of proteins. Int J Pharm. 2018;552:352–9.

    Article  CAS  Google Scholar 

  5. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.

    Article  CAS  Google Scholar 

  6. Ye Y, Yu J, Wen D, Kahkoska AR, Gu Z. Polymeric microneedles for transdermal protein delivery. Adv Drug Del Rev. 2018;127:106–18.

    Article  CAS  Google Scholar 

  7. Lee KY, Yuk SH. Polymeric protein delivery systems. Prog Polym Sci. 2007;32:669–97.

    Article  CAS  Google Scholar 

  8. Villegas MR, Baeza A, Vallet-Regi M. Nanotechnological strategies for protein delivery. Molecules. 2018;23:1008. https://doi.org/10.3390/molecules23051008.

    Article  Google Scholar 

  9. Guo H, Guo Q, Chu T, Zhang X, Wu Z, Yu D. Glucose-sensitive polyelectrolyte nanocapsules based on layer-by-layer technique for protein drug delivery. J Mater Sci Mater Med. 2014;25:121–9.

    Article  CAS  Google Scholar 

  10. Peng Q, Zhang Z-R, Gong T, Chen G-Q, Sun X. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials. 2012;33:1583–8.

    Article  CAS  Google Scholar 

  11. Taluja A, Youn YS, Bae YH. Novel approaches in microparticulate PLGA delivery systems encapsulating proteins. J Mater Chem. 2007;17:4002–14.

    Article  CAS  Google Scholar 

  12. Mukhopadhyay P, Mishra R, Rana D, Kundu PP. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review. Prog Polym Sci. 2012;37:1457–75.

    Article  CAS  Google Scholar 

  13. Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal. 2015;23:351–8.

    Article  CAS  Google Scholar 

  14. Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int J Pharm. 2018;537:223–44.

    Article  CAS  Google Scholar 

  15. Ansary RH, Rahman MM, Mohamad N, Arrif TM, Latif AZA, H Katas L, et al. Controlled release of lysozyme from double-walled poly(lactide-co-glycolide) (PLGA) microspheres. Polymers. 2017;9:485. https://doi.org/10.3390/polym9100485.

    Article  Google Scholar 

  16. Mir M, Ahmed N, Rehman Au. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017;159:217–31.

    Article  CAS  Google Scholar 

  17. MM Pakulska, IE Donaghue, JM Obermeyer, A Tuladhar, CK McLaughlin, TN Shendruk, et al. Encapsulation-free controlled release: electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles. Sci Adv. 2016;2:e1600519. https://doi.org/10.1126/sciadv.1600519.

    Article  Google Scholar 

  18. Abdul Hamid ZA, Tham CY, Ahmad Z. Preparation and optimization of surface-engineered poly(lactic acid) microspheres as a drug delivery device. J Mater Sci. 2018;53:4745–58.

    Article  CAS  Google Scholar 

  19. Wu JZ, Williams GR, Li HY, Wang DX, Li SD, Zhu LM. Insulin-loaded PLGA microspheres for glucose-responsive release. Drug Deliv. 2017;24:1513–25.

    Article  CAS  Google Scholar 

  20. Guarecuco R, Lu J, McHugh KJ, Norman JJ, Thapa LS, Lydon E, et al. Immunogenicity of pulsatile-release PLGA microspheres for single-injection vaccination. Vaccine. 2018;36:3161–8.

    Article  CAS  Google Scholar 

  21. PW Lee, JK Pokorski. Poly(lactic-co-glycolic acid) devices: production and applications for sustained protein delivery. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2018;10:e1516. https://doi.org/10.1002/wnan.516.

  22. Ayoub MM, Elantouny NG, El-Nahas HM, Ghazy FE-DS. Injectable PLGA Adefovir microspheres; the way for long term therapy of chronic hepatitis-B. Eur J Pharm Sci. 2018;118:24–31.

    Article  CAS  Google Scholar 

  23. Kim JR, Netravali AN. Parametric study of protein-encapsulated microcapsule formation and effect on self-healing efficiency of ‘green’ soy protein resin. J Mater Sci. 2017;52:3028–47.

    Article  CAS  Google Scholar 

  24. Park W, Kim D, Kang HC, Bae YH, Na K. Multi-arm histidine copolymer for controlled release of insulin from poly(lactide-co-glycolide) microsphere. Biomaterials. 2012;33:8848–57.

    Article  CAS  Google Scholar 

  25. Kang HC, Lee JE, Bae YH. Nanoscaled buffering zone of charged (PLGA)(n)-b-bPEI micelles in acidic microclimate for potential protein delivery application. J Control Release. 2012;160:440–50.

    Article  CAS  Google Scholar 

  26. Aragón J, Salerno S, De Bartolo L, Irusta S, Mendoza G. Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering. J Colloid Interface Sci. 2018;531:126–37.

    Article  Google Scholar 

  27. Zhang Y, Lin L, Liu L, Liu F, Maruyama A, Tian H, et al. Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydr Polym. 2018;201:246–56.

    Article  CAS  Google Scholar 

  28. Huang F-W, Wang H-Y, Li C, Wang H-F, Sun Y-X, Feng J, et al. PEGylated PEI-based biodegradable polymers as non-viral gene vectors. Acta Biomater. 2010;6:4285–95.

    Article  CAS  Google Scholar 

  29. Lv J, Yang J, Hao X, Ren X, Feng Y, Zhang W. Biodegradable PEI modified complex micelles as gene carriers with tunable gene transfection efficiency for ECs. J Mater Chem B. 2016;4:997–1008.

    Article  CAS  Google Scholar 

  30. Ahn C-H, Chae SY, Bae YH, Kim SW. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J Control Release. 2002;80:273–82.

    Article  CAS  Google Scholar 

  31. Park MR, Han KO, Han IK, Cho MH, Nah JW, Choi YJ, et al. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J Control Release. 2005;105:367–80.

    Article  CAS  Google Scholar 

  32. Zeng X, Tao W, Mei L, Huang L, Tan C, Feng S-S. Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials. 2013;34:6058–67.

    Article  CAS  Google Scholar 

  33. Zou T, Cheng S-X, Zhang X-Z, Zhuo R-X. Novel cholic acid functionalized star oligo/poly(DL-lactide)s for biomedical applications. J Biomed Mater Res B Appl Biomater. 2007;82B:400–7.

    Article  CAS  Google Scholar 

  34. Chen Y, Yang Z, Liu C, Wang C, Zhao S, Yang J, et al. Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid). Int J Nanomed. 2013;8:4315–26.

    Google Scholar 

  35. Zhou M, Zhang X, Xie J, Qi R, Lu H, Leporatti S, et al. pH-Sensitive poly(β-amino ester)s nanocarriers facilitate the inhibition of drug resistance in breast cancer cells. Nanomaterials. 2018;8:952.

    Article  Google Scholar 

  36. Cheng H, Li C, Jiang Y, Wang B, Wang F, Mao Z, et al. Facile preparation of polysaccharide-based sponges and their potential application in wound dressing. J Mater Chem B. 2018;6:634–40.

    Article  CAS  Google Scholar 

  37. Liu X, Shen X, Sun X, Peng Y, Li R, Yun P, et al. Biocompatibility evaluation of self-assembled micelles prepared from poly(lactide-co-glycolide)-poly(ethylene glycol) diblock copolymers. Polym Adv Technol. 2018;29:205–15.

    Article  CAS  Google Scholar 

  38. Kang HC, Kang H-J, Bae YH. A reducible polycationic gene vector derived from thiolated low molecular weight branched polyethyleneimine linked by 2-iminothiolane. Biomaterials. 2011;32:1193–203.

    Article  CAS  Google Scholar 

  39. Ou M, Xu R, Kim SH, Bull DA, Kim SW. A family of bioreducible poly(disulfide amine)s for gene delivery. Biomaterials. 2009;30:5804–14.

    Article  CAS  Google Scholar 

  40. Su F-Y, Lin K-J, Sonaje K, Wey S-P, Yen T-C, Ho Y-C, et al. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012;33:2801–11.

    Article  CAS  Google Scholar 

  41. Sharma G, Wilson K, van der Walle CF, Sattar N, Petrie JR, Kumar MNVR. Microemulsions for oral delivery of insulin: Design, development and evaluation in streptozotocin induced diabetic rats. Eur J Pharm Biopharm. 2010;76:159–69.

    Article  CAS  Google Scholar 

  42. Chou H-S, Larsson M, Hsiao M-H, Chen Y-C, Röding M, Nydén M, et al. Injectable insulin-lysozyme-loaded nanogels with enzymatically-controlled degradation and release for basal insulin treatment: In vitro characterization and in vivo observation. J Control Release. 2016;224:33–42.

    Article  CAS  Google Scholar 

  43. Peng Q, Sun X, Gong T, Wu CY, Zhang T, Tan J, et al. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomater. 2013;9:5063–9.

    Article  CAS  Google Scholar 

  44. Tang GP, Zeng JM, Gao SJ, Ma YX, Shi L, Li Y, et al. Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials. 2003;24:2351–62.

    Article  CAS  Google Scholar 

  45. Tao W, Zeng X, Liu T, Wang Z, Xiong Q, Ouyang C, et al. Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater. 2013;9:8910–20.

    Article  CAS  Google Scholar 

  46. Zhang C, Wang W, Liu T, Wu Y, Guo H, Wang P, et al. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials. 2012;33:2187–96.

    Article  CAS  Google Scholar 

  47. Herrera Estrada LP, Champion JA. Protein nanoparticles for therapeutic protein delivery. Biomater Sci. 2015;3:787–99.

    Article  CAS  Google Scholar 

  48. Wu Q, Wang C, Zhang D, Song X, Liu D, Wang L, et al. Synthesis and micellization of a new amphiphilic star-shaped poly(D,L-lactide)/polyphosphoester block copolymer. React Funct Polym. 2012;72:372–7.

    Article  CAS  Google Scholar 

  49. Giteau A, Venier-Julienne MC, Aubert-Pouëssel A, Benoit JP. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm. 2008;350:14–26.

    Article  CAS  Google Scholar 

  50. Wan Y, Yu A, Wu H, Wang Z, Wen D. Porous-conductive chitosan scaffolds for tissue engineering II. In vitro and in vivo degradation. J Mater Sci Mater Med. 2005;16:1017–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 81373365) and Guangdong Science and Technology Project (No. 2015A010105014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbing Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, S., Chen, T. et al. Nanoscale cationic micelles of amphiphilic copolymers based on star-shaped PLGA and PEI cross-linked PEG for protein delivery application. J Mater Sci: Mater Med 30, 93 (2019). https://doi.org/10.1007/s10856-019-6294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6294-y

Navigation