Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of additive manufactured porous Ti–33Nb–4Sn scaffolds for orthopaedic applications

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Customized porous titanium alloys have become the emerging materials for orthopaedic implant applications. In this work, diamond and rhombic dodecahedron porous Ti-33Nb-4Sn scaffolds were fabricated by selective laser melting (SLM). The phase, microstructure and defects characteristics were investigated systematically and correlated to the effects of pore structure, unit cell size and processing parameter on the mechanical properties of the scaffolds. Fine β phase dendrites were obtained in Ti-33Nb-4Sn scaffolds due to the fast solidification velocity in SLM process. The compressive and bending strength of the scaffolds decrease with the decrease of strut size and diamond structures showed both higher compressive and bending strength than the dodecahedron structures. Diamond Ti-33Nb-4Sn scaffold with compressive strength of 76 MPa, bending strength of 127 MPa and elastic modulus of 2.3 GPa was achieved by SLM, revealing the potential of Ti-33Nb-4Sn scaffolds for applications on orthopaedic implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  2. Fojt J, Fousova M, Jablonska E, Joska L, Hybasek V, Pruchova E, et al. Corrosion behaviour and cell interaction of Ti-6Al-4V alloy prepared by two techniques of 3D printing. Mater Sci Eng C. 2018;93:911–20.

    Article  CAS  Google Scholar 

  3. Tong J, Bowen CR, Plummer J. Mechanical properties of titanium-based Ti-6Al-4V alloys manufactured by powder bed additive manufacture. Mater Sci Technol. 2017;33:138–48.

    Article  CAS  Google Scholar 

  4. Haghighi SE, Lu H, Jian G, Cao G, Habibi D, Zhang LC. Effect of α’’ martensite on the microstructure and mechanical properties of beta–type Ti–Fe–Ta alloys. Mater Des. 2015;76:47–54.

    Article  CAS  Google Scholar 

  5. Murr LE, Gaytan S, Ceylan A, Martinez E, Martinez J, Hernandez D, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater. 2010;58:1887–94.

    Article  CAS  Google Scholar 

  6. Sercombe TB, Xu X, Challis VJ, Green R, Sheng Y, Zhang Z, et al. Failure modes in high strength and stiffness to weight scaffolds produced by selective laser melting. Mater Des. 2015;67:501–8.

    Article  CAS  Google Scholar 

  7. Wang Q, Han CJ, Choma T, Wei QS, Yan CZ, Song B, et al. Effect of Nb content on microstructure, property and in vitro apatite–forming capability of Ti–Nb alloys fabricated via selective laser melting. Mater Des. 2017;126:268–77.

    Article  CAS  Google Scholar 

  8. Liu YJ, Wang HL, Li SJ, Wang SG, Wang WJ, Hou WT, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater. 2017;126:58–66.

    Article  CAS  Google Scholar 

  9. Miura K, Yamada N, Hanada S, Jung T.-K, Itoi E. The bone tissue compatibility of a new Ti–Nb–Sn alloy with a low Young’s modulus. Acta Biomater. 2011;7:2320–6.

    Article  CAS  Google Scholar 

  10. Chang LL, Wang YD, Ren Y. In-situ investigation of stress-induced martensitic transformation in Ti–Nb binary alloys with low Young’s modulus. Mater Sci Eng A. 2016;651:442–8.

    Article  CAS  Google Scholar 

  11. Moraes PE, Contieri RJ, Lopes ES, Robin A, Caram R. Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys. Mater Charact. 2014;96:273–81.

    Article  CAS  Google Scholar 

  12. Pina VG, Dalmau A, Devesa F, Amigo V, Munoz AI. Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution. J Mech Behav Biomed Mater. 2015;46:59–68.

    Article  CAS  Google Scholar 

  13. Griza S, de Souza Sa DHG, Batista WW, de Blas JCG, Pereira LC. Microstructure and mechanical properties of hot rolled TiNbSn alloys. Mater Des. 2014;56:200–8.

    Article  CAS  Google Scholar 

  14. Matsumoto H, Watanabe S, Hanada S. Beta TiNbSn alloys with low Young's modulus and high strength. Mater Trans. 2005;46:1070–8.

    Article  CAS  Google Scholar 

  15. Salvador CA, Lopes ES, Ospina CA, Caram R. Orthorhombic martensite formation upon aging in a Ti-30Nb-4Sn alloy. Mater Chem Phys. 2016;183:238–46.

    Article  CAS  Google Scholar 

  16. Guo S, Meng QK, Zhao XQ, Wei QM, Xu HB. Design and fabrication of a metastable beta-type titanium alloy with ultralow elastic modulus and high strength. Sci Rep. 2015;5:14688

    Article  CAS  Google Scholar 

  17. Chen W, Chen C, Lin YC, Zi XH, Cheng XF, Zhang XY, et al. Controlling the microstructure and mechanical properties of a metastable β titanium alloy by selective laser melting. Mater Sci Eng A. 2018;726:240–50.

    Article  CAS  Google Scholar 

  18. Zhou CC, Deng CY, Chen XN, Zhao XF, Chen Y, Fan YJ, et al. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. J Mech Behav Biomed Mater. 2015;48:1–11.

    Article  Google Scholar 

  19. Wang Z, Wang C, Li C, Qin Y, Zhong L, Chen B, et al. Analysis of factors influencing bone in growth into three-dimensional printed porous metal scaffolds: a review. J Alloy Compd. 2017;717:271–85.

    Article  CAS  Google Scholar 

  20. Cattalini J, Hoppe A, Pishbin F, Roether J, Boccaccini A, Lucangioli S, et al. Novel nanocomposite biomaterials with controlled copper/calcium release capability for bone tissue engineering multifunctional scaffolds. J R Soc Interface. 2015;12:20150509

    Article  Google Scholar 

  21. Chia-Ying L, Tobias W, Frank LM, Scott JH. Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. J Biomed Mater Res A. 2007;10:31231

    Google Scholar 

  22. Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C. 2017;76:1328–43.

    Article  CAS  Google Scholar 

  23. Carter LN, Wang X, Read N, Khan R, Aristizabal M, Essa K, Attallah MM. Process optimisation of selective laser melting using energy density model for nickel based superalloys. Mater Sci Technol. 2016;32:657–61.

    CAS  Google Scholar 

  24. Kempen K, Thijs L, Van Humbeeck J, Kruth J.-P. Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterization. Mater Sci Technol. 2015;31:917–23.

    Article  CAS  Google Scholar 

  25. Zhou ZX, Cunningham E, Lennon A, McCarthy HO, Buchanan F, Dunne N. Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption. Mater Sci Eng C. 2018;93:975–86.

    Article  CAS  Google Scholar 

  26. Zhuravleva K, Bonisch M, Prashanth KG, Hempel U, Helth A, Gemming T, et al. Production of porous beta-type Ti–40Nb alloy for biomedical applications:comparison of selective laser melting and hot pressing. Materials. 2013;6:5700–12.

    Article  CAS  Google Scholar 

  27. Zhang BQ, Pei X, Zhou CC, Fan YJ, Jiang Q, Ronca A, et al. The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction. Mater Des. 2018;152:30–9.

    Article  CAS  Google Scholar 

  28. Sallica-Leva E, Jardini AL, Fogagnolo JB. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting. J Mech Behav Biomed Mater. 2013;26:98–108.

    Article  CAS  Google Scholar 

  29. Liu YJ, Li XP, Zhang LC, Sercombe TB. Processing and properties of topologically optimized biomedical Ti–24Nb–4Zr–8Sn scaffolds manufactured by selective laser melting. Mater Sci Eng A. 2015;642:268–78.

    Article  CAS  Google Scholar 

  30. Rafi HK, Pal D, Patil N, Starr TL, Stucker BE. Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting. J Mater Eng Preform. 2014;23:4421–8.

    Article  CAS  Google Scholar 

  31. Sing SL, Wiria FE, Yeong WF. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. J Alloy Compd. 2016;660:461–70.

    Article  CAS  Google Scholar 

  32. Loh LE, Chua CK, Yeong WY, Song J, Mapar M, Sing SL, et al. Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf. 2015;80:288–300.

    Article  CAS  Google Scholar 

  33. Semak V, Matsunawa A. The role of recoil pressure in energy balance during laser materials processing. J Phys D Appl Phys. 1998;30:2541–52.

    Article  Google Scholar 

  34. Silva DN, De Oliveira MG, Meurer MI, Da Silva JVL, Santa-Barbara A. Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Cranio Maxill Surg. 2008;36:443–9.

    Article  Google Scholar 

  35. Gu DD, Shen YF. Balling phenomena indirect laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater Des. 2009;30:2903–10.

    Article  CAS  Google Scholar 

  36. Liu YJ, Li SJ, Wang HL, Hou WT, Hao YL, Yang R, et al. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 2016;113:56–67.

    Article  CAS  Google Scholar 

  37. Liu YJ, Li SJ, Hou WT, Wang SG, Hao YL, Yang R, et al. Electron Beam Melted Beta-type Ti–24Nb–4Zr–8Sn Porous Structures With High Strength-to-Modulus Ratio. J Mater Sci Technol. 2016;32:505–8.

    Article  Google Scholar 

  38. Rappaz M, Gandin CA. Probabilistic modeling of microstructure formation in solidification processes. Acta Met Mater. 1993;41:345–60.

    Article  CAS  Google Scholar 

  39. Mullen L, Stamp RC, Fox P, Jones E, Ngo C, Sutcliffe CJ. Selective Laser Melting: A Unit Cell Approach for the Manufacture of Porous, Titanium, BoneIn-Growth Constructs, Suitable for Orthopedic Applications. II. Randomized Structures. J Biomed Mater Res B Appl Biomater. 2009;92B:178–88.

    Article  Google Scholar 

  40. Pyka G, Kerckhofs G, Van Bael S, Moesen M, Loeckx D, Schrooten J, et al. Non-destructive characterization of the influence of surface modification on the morphology and mechanical behavior of rapid prototyped Ti6Al4V bone tissue engineering scaffolds. Moscow: European Conference for Non-Destructive Testing (ECNDT); 2010.

  41. Gu DD, Shen YF. Balling phenomena during direct sintering of multicomponent Cu based metal powder. J Alloy Compd. 2007;432:163–6.

    Article  CAS  Google Scholar 

  42. Hollander DR, Von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, et al. Structural,mechanical and invitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials. 2006;27:955–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial supports from the National Key R&D Program of China (No. 2017YFB0306300), the National Natural Science Foundation of China (No. 51602350), the China Postdoctoral Science Foundation (2017M610505), the Key R&D Program of Hunan Province, China (No. 2016JC2003), the Natural Science Foundation of Hunan Province, China (No. 2018JJ3654) and the fund of State Key Laboratory of Powder Metallurgy, Central South University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Chen or Xiaoyong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Liu, S., Chen, C. et al. Microstructure and mechanical properties of additive manufactured porous Ti–33Nb–4Sn scaffolds for orthopaedic applications. J Mater Sci: Mater Med 30, 91 (2019). https://doi.org/10.1007/s10856-019-6292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6292-0

Navigation