Skip to main content
Log in

Sustained release of TGF-β1 via genetically-modified cells induces the chondrogenic differentiation of mesenchymal stem cells encapsulated in alginate sulfate hydrogels

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Strategies based on growth factor (GF) delivery have attracted considerable attention in tissue engineering applications. Among different GFs, transforming growth factor beta 1 (TGF-β1) is considered to be a potent factor for inducing chondrogenesis. In the present study, an expression cassette encoding the TGF-β1 protein was prepared and transfected into the SP2/0-Ag14 cell line. The confocal microscopy of the transfected cells was performed to confirm the correct transfection process. The expression and in vitro release kinetics of the recombinant TGF-β1 were assessed by western blot analysis and ELISA, respectively. Moreover, the biological activity of the expressed protein was compared with that of a commercially available product. The chondrogenic effects of the sustained release of the recombinant TGF-β1 in an in vitro co-culture system were evaluated using a migration assay and real-time PCR. Results of confocal microscopy confirmed the successful transfection of the vector-encoding TGF-β1 protein into the SP2/0-Ag14 cells. The bioactivity of the produced protein was in the range of the commercial product. The sustained release of the TGF-β1 protein via SP2/0-Ag14 cells encapsulated in hydrogels encouraged the migration of adipose-derived MSCs. In addition, the expression analysis of chondrogenesis-related genes revealed that the pretreatment of encapsulated Ad-MSCs cells in alginate sulfate hydrogels through their exposure to the sustained release of TGF-β1 is an efficient approach before transplantation of cells into the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moradi L, Vasei M, Dehghan MM, Majidi M, Mohajeri SF, Bonakdar S. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: in vivo study. Biomaterials. 2017;126:18–30.

    Article  CAS  Google Scholar 

  2. Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012;347(3):613–27.

    Article  CAS  Google Scholar 

  3. Nukavarapu SP, Dorcemus DL. Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv. 2013;31(5):706–21.

    Article  CAS  Google Scholar 

  4. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920.

    Article  CAS  Google Scholar 

  5. Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M. Cartilage tissue engineering. In: Camacho-Hübner C, Nilsson O, Sävendahl l, (eds.) Cartilage and bone development and its disorders. Karger Publishers. 2011. p. 102–15.

    Chapter  Google Scholar 

  6. Lindahl A, Brittiberg M, Gibbs D, Dawson JI, Kanczler J, Black C. et al. Cartilage and bone regeneration. In: De Boer J, Van Blitterswijk C (eds) Tissue engineering. 2nd edn. Amsterdam, Netherland: Elsevier; 2015. p. 529–82.

  7. Toh WS, Foldager CB, Pei M, Hui JH. Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Rev Rep. 2014;10(5):686–96.

    Article  CAS  Google Scholar 

  8. Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH. Autologous bone marrow–derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38(6):1110–6.

    Article  Google Scholar 

  9. Hwang NS, Varghese S, Zhang Z, Elisseeff J. Chondrogenic differentiation of human embryonic stem cell–derived cells in arginine-glycine-aspartate–modified hydrogels. Tissue Eng. 2006;12(9):2695–706.

    Article  CAS  Google Scholar 

  10. Yu D-A, Han J, Kim B-S. Stimulation of chondrogenic differentiation of mesenchymal stem cells. Int J Stem Cells. 2012;5(1):16 p.

    Article  CAS  Google Scholar 

  11. Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells. Med Hypotheses. 2008;71(6):900–8.

    Article  CAS  Google Scholar 

  12. Farajollahi MM, Hamzehlou S, Mehdipour A, Samadikuchaksaraei A. Recombinant proteins: hopes for tissue engineering. BioImpacts. 2012;2(3):123

    CAS  Google Scholar 

  13. Poniatowski, ŁA, Wojdasiewicz P, Gasik, Szukiewicz D. Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators inflamm. 2015; 137823, https://doi.org/10.1155/2015/137823.

  14. Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 2003;9(4):679–88.

    Article  CAS  Google Scholar 

  15. Govinden R, Bhoola K. Genealogy, expression, and cellular function of transforming growth factor-β. Pharmacol Ther. 2003;98(2):257–65.

    Article  CAS  Google Scholar 

  16. Sporn MB, Roberts AB, Wakefield LM, Assoian RK. Transforming growth factor-beta: biological function and chemical structure. Science. 1986;233:532–5.

    Article  CAS  Google Scholar 

  17. Iwasa K, Reddi AH. Optimization of methods for articular cartilage surface tissue engineering: cell density and transforming growth factor beta are critical for self-assembly and lubricin secretion. Tissue Eng Part C: Methods. 2017;23(7):389–95.

    Article  CAS  Google Scholar 

  18. Albro MB, Nims RJ, Durney KM, Cigan AD, Shim JJ, Vunjak-Novakovic G. et al. Heterogeneous engineered cartilage growth results from gradients of media-supplemented active TGF-β and is ameliorated by the alternative supplementation of latent TGF-β. Biomaterials. 2016;77:173–85.

    Article  CAS  Google Scholar 

  19. Kim J, Lin B, Kim S, Choi B, Evseenko D, Lee M. TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. J Biol Eng. 2015;9(1):1

    Article  Google Scholar 

  20. Yin F, Cai J, Zen W, Wei Y, Zhou W, Yuan F. et al. Cartilage regeneration of adipose-derived stem cells in the TGF-β1-immobilized PLGA-gelatin scaffold. Stem Cell Rev Rep. 2015;11(3):453–9.

    Article  CAS  Google Scholar 

  21. Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H. et al. Effects of the controlled-released TGF-β1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials. 2004;25(18):4163–73.

    Article  CAS  Google Scholar 

  22. DeFail AJ, Chu CR, Izzo N, Marra KG. Controlled release of bioactive TGF-β1 from microspheres embedded within biodegradable hydrogels. Biomaterials. 2006;27(8):1579–85.

    Article  CAS  Google Scholar 

  23. Saraf A, Mikos AG. Gene delivery strategies for cartilage tissue engineering. Adv Drug Deliv Rev. 2006;58(4):592–603.

    Article  CAS  Google Scholar 

  24. Milan PB, Lotfibakhshaiesh N, Joghataie MT, Ai J, Pazouki A, Kaplan DL. et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater. 2016;45:234–46.

    Article  CAS  Google Scholar 

  25. Diekman BO, Christoforou N, Willard VP, Sun H, Sanchez-Adams J, Leong KW. et al. Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci USA. 2012;109(47):19172–7.

    Article  CAS  Google Scholar 

  26. Kargozar S, Mozafari M, Hashemian SJ, Brouki Milan P, Hamzehlou S, Soleimani M. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: a comparative study between human mesenchymal stem cells derived from bone, umbilical cord Whartonas jelly, and adipose tissue. J Biomed Mater Res B Appl Biomater. 2016;106(1):61–72.

    Article  Google Scholar 

  27. Wilson A, Butler P, Seifalian A. Adipose‐derived stem cells for clinical applications: a review. Cell Prolif. 2011;44(1):86–98.

    Article  CAS  Google Scholar 

  28. Lanza R, Langer R, Vacanti J. Principles of tissue engineering. 2011. 4th Edn, Academic press: Massachusetts, USA, 1936 pp.

  29. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54.

    Article  CAS  Google Scholar 

  30. Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: where are we and where are we going?. J Funct Biomater. 2018;9(1):25.

    Article  Google Scholar 

  31. Knappskog S, Ravneberg H, Gjerdrum C, Trösse C, Stern B, Pryme IF. The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J Biotechnol. 2007;128(4):705–15.

    Article  CAS  Google Scholar 

  32. Oosterlynck DJ, Meuleman C, Waer M, Koninckx PR. Transforming growth factor-beta activity is increased in peritoneal fluid from women with endometriosis. Obstet Gynecol. 1994;83(2):287–92.

    CAS  Google Scholar 

  33. Babavalian H, Latifi AM, Shokrgozar MA, Bonakdar S, Mohammadi S, Moosazadeh Moghaddam M. Analysis of healing effect of alginate sulfate hydrogel dressing containing antimicrobial peptide on wound infection caused by methicillin-resistant Staphylococcus aureus. Jundishapur J Microbiol. 2015;8(9):e28320 https://doi.org/10.5812/jjm.28320.

    Article  Google Scholar 

  34. Mhanna R, Mhanna R1, Kashyap A, Palazzolo G, Vallmajo-Martin Q, Becher J, Möller S. et al. Chondrocyte culture in three dimensional alginate sulfate hydrogels promotes proliferation while maintaining expression of chondrogenic markers. Tissue Eng Part A. 2014;20(9-10):1454–64.

    Article  CAS  Google Scholar 

  35. Zou Z, Sun PD. Overexpression of human transforming growth factor-β1 using a recombinant CHO cell expression system. Protein Expr Purif. 2004;37(2):265–72.

    Article  CAS  Google Scholar 

  36. Brownh PD, Wakefield LM, Levinson AD, Sporn MB. Physicochemical activation of recombinant latent transforming growth factor-beta’s 1, 2, and 3. Growth Factors. 1990;3(1):35–43.p.

    Article  Google Scholar 

  37. Müller M, Öztürk E, Arlov Ø, Gatenholm P, Zenobi-Wong M. Alginate sulfate—nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng. 2017;45(1):210–23.

    Article  Google Scholar 

  38. Re’em T, Kaminer-Israeli Y, Ruvinov E, Cohen S. Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials. 2012;33(3):751–61.

    Article  Google Scholar 

  39. Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27(1):91–99.

    Article  CAS  Google Scholar 

  40. Cao X, Deng W, Wei Y, Yang Y, Su W, Wei Y. et al. Incorporating pTGF-beta1/calcium phosphate nanoparticles with fibronectin into 3-dimensional collagen/chitosan scaffolds: efficient, sustained gene delivery to stem cells for chondrogenic differentiation. Eur Cell Mater. 2012;23:81–93.

    Article  CAS  Google Scholar 

  41. Guan J-L. Cell migration: developmental methods and protocols. 294. 2005. Springer Science & Business Media.

  42. Mehlhorn AT, Niemeyer P, Kaiser S, Finkenzeller G, Stark GB, Südkamp NP, Schmal H. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 2006;12(10):2853–62.

    Article  CAS  Google Scholar 

  43. Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG. et al. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials. 2007;28(21):3217–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was generously funded by grants from the National Science Foundation (INSF) through Research Grant No. 92026749 and the Pasteur Institute of Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vahid Khalaj or Mohammad Ali Shokrgozar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, M., Bonakdar, S., Anbouhi, M.H. et al. Sustained release of TGF-β1 via genetically-modified cells induces the chondrogenic differentiation of mesenchymal stem cells encapsulated in alginate sulfate hydrogels. J Mater Sci: Mater Med 30, 7 (2019). https://doi.org/10.1007/s10856-018-6203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6203-9

Navigation