Skip to main content
Log in

Self-assembled nanoparticles for cellular delivery of peptide nucleic acid using amphiphilic N,N,N-trimethyl-O-alkyl chitosan derivatives

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Peptide nucleic acid (PNA) holds enormous potentials as antisense/antigenic drug due to its specific binding ability and biostability with DNA or RNA. However, the poor cellular delivery is the key obstacle in development of PNA therapy. To overcome this difficulty, we developed self-assembled nanoparticles (NPs) for delivery of PNA to living cells using amphiphilic CS derivatives. A series of N,N,N-trimethyl-O-alkyl chitosans (TMACs) with different lengths of alkyl chains were synthesized. The structures of these synthesized chemicals were characterized with FT-IR and 1H NMR. We found that the TMACs were all able to self-assemble in aqueous condition to form nano-size NPs. These nano-size NPs are spherical shape with a size range of around 100 nm and a zeta potential above +30 mV. PNA was easily encapsulated into chitosan derivative NPs by an ultrasonic method with entrapment efficiency up to 75%. The PNA-loaded TMAC NPs released the drug in a sustained manner in PBS (pH 7.4) at 37 °C. N,N,N-trimethyl-O-cetyl chitosan (TMCC) showed the best in vitro hemocompatibility and cell viability. These TMCC based NPs were able to dramatically increase the cellular uptake of PNA, specifically, 66-fold higher compared to without using these nanoparticles. The results suggest that the designed TMCC NPs might be a promising solution for improving cellular delivery of PNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Luo J, Ling Y, Li X, Yuan B, Yu F, Xie WH, Chen XF. Combining amphiphilic chitosan and bioglass for mediating cellular osteogenic growth peptide gene. RSC Adv. 2015;5:79239–48.

    Article  CAS  Google Scholar 

  2. Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 1991;254:1497–500.

    Article  CAS  Google Scholar 

  3. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature. 1993;365:566–8. https://doi.org/10.1038/365566a0.

    Article  CAS  Google Scholar 

  4. Hyrup B, Nielsen PE. Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorgan Med Chem. 1996;4:5–23.

    Article  CAS  Google Scholar 

  5. Sugimoto N, Nakano S, Katoh M, Matsumura A, Nakamuta H, Ohmichi T, Yoneyama M, Sasaki M. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry. 1995;34:11211–6.

    Article  CAS  Google Scholar 

  6. Veldhoen S, Laufer SD, Restle T. Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci. 2008;9:1276–320. https://doi.org/10.3390/Ijms9071276.

    Article  CAS  Google Scholar 

  7. Koppelhus U, Nielsen PE. Cellular delivery of peptide nucleic acid (PNA). Adv Drug Deliv Rev. 2003;55:267–80.

    Article  CAS  Google Scholar 

  8. Liu CD, Wang JH, Xie Y, Chen H. Synthesis and DNA/RNA complementation studies of peptide nucleic acids containing 5-halouracils. MedChemComm. 2017;8:385–9. https://doi.org/10.1039/c6md00536e.

    Article  CAS  Google Scholar 

  9. Ellipilli S, Palvai S, Ganesh KN. Fluorinated peptide nucleic acids with fluoroacetyl side chain bearing 5-(F/CF3)-uracil: synthesis and cell uptake studies. J Org Chem. 2016;81:6364–73. https://doi.org/10.1021/acs.joc.6b01009.

    Article  CAS  Google Scholar 

  10. Lee SH, Moroz E, Castagner B, Leroux JC. Activatable cell penetrating peptide-peptide nucleic acid conjugate via reduction of azobenzene PEG chains. J Am Chem Soc. 2014;136:12868–71. https://doi.org/10.1021/ja507547w.

    Article  CAS  Google Scholar 

  11. Maslov MA, Kabilova TO, Petukhov IA, Morozova NG, Serebrennikova GA, Vlassov VV, Zenkova MA. Novel cholesterol spermine conjugates provide efficient cellular delivery of plasmid DNA and small interfering RNA. J Control Release. 2012;160:182–93. https://doi.org/10.1016/j.jconrel.2011.11.023.

    Article  CAS  Google Scholar 

  12. Shiraishi T, Nielsen PE. Nanomolar cellular antisense activity of peptide nucleic acid (PNA) cholic acid (“Umbrella”) and cholesterol conjugates delivered by cationic lipids. Bioconjugate Chem. 2012;23:196–202. https://doi.org/10.1021/Bc200460t.

    Article  CAS  Google Scholar 

  13. McNeer NA, Anandalingam K, Fields RJ, Caputo C, Kopic S, Gupta A, Quijano E, Polikoff L, Kong Y, Bahal R, Geibel JP, Glazer PM, Saltzman WM, Egan ME. Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium. Nat Commun. 2015;6:6952 https://doi.org/10.1038/ncomms7952.

    Article  CAS  Google Scholar 

  14. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32. https://doi.org/10.1016/j.progpolymsci.2006.06.001.

    Article  CAS  Google Scholar 

  15. Wang H, Qian J, Ding F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J Mater Chem B. 2017;5:34.

    Google Scholar 

  16. Layek B, Haldar MK, Sharma G, Lipp L, Mallik S, Singh J. Hexanoic acid and polyethylene glycol double grafted amphiphilic chitosan for enhanced gene delivery: influence of hydrophobic and hydrophilic substitution degree. Mol Pharm. 2014;11:982–94.

    Article  CAS  Google Scholar 

  17. Liu Y, Kong M, Cheng XJ, Wang QQ, Jiang LM, Chen XG. Self-assembled nanoparticles based on amphiphilic chitosan derivative and hyaluronic acid for gene delivery. Carbohydr Polym. 2013;94:309–16.

    Article  CAS  Google Scholar 

  18. Dodane V, Vilivalam VD. Pharmaceutical applications of chitosan. Pharm Sci Technol Today. 1998;1:246–52.

    Article  CAS  Google Scholar 

  19. Prabaharan M. Review paper: chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl. 2008;23:5–36. https://doi.org/10.1177/0885328208091562.

    Article  CAS  Google Scholar 

  20. Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S, Illum L. PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci. 2012;37:659–85. https://doi.org/10.1016/j.progpolymsci.2011.10.001.

    Article  CAS  Google Scholar 

  21. Rahmani S, Mohammadi Z, Amini M, Isaei E, Taheritarigh S, Tehrani NR, Tehrani MR. Methylated 4-N,N dimethyl aminobenzyl N,O carboxymethyl chitosan as a new chitosan derivative: synthesis, characterization, cytotoxicity and antibacterial activity. Carbohydr Polym. 2016;149:131–9.

    Article  CAS  Google Scholar 

  22. Denora N, Lopedota A, Perrone M, Laquintana V, Iacobazzi RM, Milella A, Fanizza E, Depalo N, Cutrignelli A, Lopalco A, Franco M. Spray-dried mucoadhesives for intravesical drug delivery using N-acetylcysteine- and glutathione-glycol chitosan conjugates. Acta Biomater. 2016;43:170–84.

    Article  CAS  Google Scholar 

  23. Nie X, Zhang J, Xu Q, Liu X, Li Y, Wu Y, Chen C. Targeting peptide iRGD-conjugated amphiphilic chitosan-co-PLA/DPPE drug delivery system for enhanced tumor therapy. J Mater Chem B. 2014;2:3232–42.

    Article  CAS  Google Scholar 

  24. Chen JJ, Zheng LX, Chen XN, Wang ZD, Li CC, Xiao YN, Guan GH, Zhu WX. Synthesis and characterization of water-soluble chitosan grafted with hydrophilic aliphatic polyester. Int J Biol Macromol. 2015;74:433–8.

    Article  CAS  Google Scholar 

  25. Li GB, Song P, Wang KL, Xue Q, Sui WP, Kong XZ. An amphiphilic chitosan derivative modified by deoxycholic acid: preparation, physicochemical characterization, and application. J Mater Sci. 2015;50:2634–42.

    Article  CAS  Google Scholar 

  26. Pedro RD, Schmitt CC, Neumann MG. Syntheses and characterization of amphiphilic quaternary ammonium chitosan derivatives. Carbohydr Polym. 2016;147:97–103.

    Article  Google Scholar 

  27. Aranaz I, Harris R, Heras A. Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem. 2010;14:308–30.

    Article  CAS  Google Scholar 

  28. Wang J, Wang L, Yu H, Zain Ul A, Chen Y, Chen Q, Zhou W, Zhang H, Chen X. Recent progress on synthesis, property and application of modified chitosan: an overview. Int J Biol Macromol. 2016;88:333–44. https://doi.org/10.1016/j.ijbiomac.2016.04.002.

    Article  CAS  Google Scholar 

  29. Wu MM, Dong HW, Guo K, Zeng R, Tu M, Zhao JH. Self-assemblied nanocomplexes based on biomimetic amphiphilic chitosan derivatives for protein delivery. Carbohydr Polym. 2015;121:115–21.

    Article  CAS  Google Scholar 

  30. Li DD, Pan JF, Ji QX, Yu XB, Liu LS, Li H, Jiao XJ, Wang L. Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA. J Mater Sci Mater Med. 2016;27:134 https://doi.org/10.1007/s10856-016-5743-0.

    Article  Google Scholar 

  31. Shi YF, Xiong ZP, Lu XF, Yan X, Cai X, Xue W. Novel carboxymethyl chitosan-graphene oxide hybrid particles for drug delivery. J Mater Sci Mater Med. 2016;27:169 https://doi.org/10.1007/s10856-016-5774-6.

    Article  Google Scholar 

  32. Kurita K, Ikeda H, Yoshida Y, Shimojoh M, Harata M. Chemoselective protection of the amino groups of chitosan by controlled phthaloylation: facile preparation of a precursor useful for chemical modifications. Biomacromolecules. 2002;3:1–4.

    Article  CAS  Google Scholar 

  33. Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release. 2005;103:643–53. https://doi.org/10.1016/j.jconrel.2004.01.001.

    Article  CAS  Google Scholar 

  34. Verheul RJ, Amidi M, van der Wal S, van Riet E, Jiskoot W, Hennink WE. Synthesis, characterization and in vitro biological properties of O-methyl free N,N,N-trimethylated chitosan. Biomaterials. 2008;29:3642–9. https://doi.org/10.1016/j.biomaterials.2008.05.026.

    Article  CAS  Google Scholar 

  35. Amin K, Dannenfelser RM. In vitro hemolysis: guidance for the pharmaceutical scientist. J Pharm Sci. 2006;95:1173–6. https://doi.org/10.1002/jps.20627.

    Article  CAS  Google Scholar 

  36. Huo M, Zhang Y, Zhou J, Zou A, Yu D, Wu Y, Li J, Li H. Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. Int J Pharm. 2010;394:162–73. https://doi.org/10.1016/j.ijpharm.2010.05.001.

    Article  CAS  Google Scholar 

  37. Yasuhara K, Kuroda K. Kinetic study of all-or-none hemolysis induced by cationic amphiphilic polymethacrylates with antimicrobial activity. Chin Chem Lett. 2015;26:479–84. https://doi.org/10.1016/j.cclet.2015.01.029.

    Article  CAS  Google Scholar 

  38. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability andhemolysis. Biomaterials. 2003;24:1121–31.

    Article  CAS  Google Scholar 

  39. Douglas KL, Piccirillo CA, Tabrizian M. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. Eur J Pharm Biopharm. 2008;68:676–87. https://doi.org/10.1016/j.ejpb.2007.09.002.

    Article  CAS  Google Scholar 

  40. Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, Beaumont E, Fernandes JC. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials. 2006;27:2060–5. https://doi.org/10.1016/j.biomaterials.2005.09.020.

    Article  CAS  Google Scholar 

  41. Liu Z, Zhang Z, Zhou C, Jiao Y. Hydrophobic modifications of cationic polymers for gene delivery. Prog Polym Sci. 2010;35:1144–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Foundation and Advanced Research Project of CQ CSTC (2013jjB0011), the Innovation Project of Social Undertakings and Livelihood Security Technology of CQ CSTC (cstc2017shms-xdny0033) and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, J., Huang, S. et al. Self-assembled nanoparticles for cellular delivery of peptide nucleic acid using amphiphilic N,N,N-trimethyl-O-alkyl chitosan derivatives. J Mater Sci: Mater Med 29, 114 (2018). https://doi.org/10.1007/s10856-018-6120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6120-y

Navigation