Skip to main content
Log in

Role of poly(ethylene oxide) in copper-containing composite used for intrauterine contraceptive devices

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Copper-containing composite is a cupric ions release system to prepare a novel copper intrauterine devices (Cu-IUDs), its biocompatibility and weight of the prepared composite Cu-IUDs are directly relevant to its such side-effects as pain and bleeding. To improve its biocompatibility and reduce its weight of such a composite Cu-IUDs, a copper-containing composite based on polymer alloy of poly(ethylene oxide) (PEO) and low-density polyethylene (LDPE) is developed. Here the role of its PEO in this novel cupric ions release system is reported. The results show that its cupric ions release rate can be adjusted easily by only changing its PEO content, and it increases remarkably with the increase of its PEO content. Our study also show that this influence is caused by the improvement of its hydrophilicity and the formation of its porous structure owing to the introduction of PEO. The improvement of its hydrophilicity make it easier for the surrounding aqueous solution to infiltrate into the composite, and the formation of its porous structure provide more routes for entry of the aqueous solution and diffusion of the released cupric ions. All these results indicate that the Cu/PEO/LDPE composite is a potential material that can be used to prepare such cupric ions release micro-devices as Cu-IUDs with slighter side-effects through its smaller weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cai X, Zhang B, Liang YY, Zhang JL, Yan YH, Chen XY, Wu ZM, Liu HX, Wen SP, Tan SZ, Wu T. Study on the antibacterial mechanism of copper ion and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity. Colloid Surf B Biointerfaces. 2015;132:281–9.

    Article  CAS  Google Scholar 

  2. Molteni C, Abicht HK, Solioz M. Killing of bacteria by copper surfaces involves dissolved copper. Appl Environ Microbiol. 2010;76:4099–01.

    Article  CAS  Google Scholar 

  3. Dankovich TA, Smith JA. Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res. 2014;63:245–1.

    Article  CAS  Google Scholar 

  4. Ilnicka A, Walczyk M, Lukaszewicz JP. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts. Mater Sci Eng C Biomim Supramol Syst. 2015;52:31–6.

    Article  CAS  Google Scholar 

  5. Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C Biomim Supramol Syst. 2016;69:1391–9.

    Article  CAS  Google Scholar 

  6. Yallappa S, Manjanna J, Dhananjaya BL, Vishwanatha U, Ravishankar B, Gururaj H, Niranjana P, Hungund BS. Phytochemically functionalized Cu and Ag nanoparticles embedded in MWCNTs for enhanced antimicrobial and anticancer properties. Nano Micro Lett. 2016;8:120–0.

    Article  Google Scholar 

  7. Kalaivani S, Singh RK, Ganesan V, Kannan S. Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal. J Mat Chem B. 2014;2:846–8.

    Article  CAS  Google Scholar 

  8. Kornblatt AP, Nicoletti VG, Travaglia A. The neglected role of copper ions in wound healing. J Inorg Biochem. 2016;161:1–8.

    Article  CAS  Google Scholar 

  9. Lin YN, Xiao W, Bal BS, Rahaman MN. Effect of copper-doped silicate 13-93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo. Mater Sci Eng C Biomim Supramol Syst. 2016;67:440–2.

    Article  CAS  Google Scholar 

  10. Burghardt I, Lüthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann HG, Rychly J. A dual function of copper in designing regenerative implants. Biomaterials . 2015;44:36–4.

    Article  CAS  Google Scholar 

  11. Li JY, Zhai D, Lv F, Yu QQ, Ma HS, Yin JB, Yi ZF, Liu MY, Chang J, Wu CT. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016;36:254–6.

    Article  CAS  Google Scholar 

  12. Zhao SC, Li L, Wang H, Zhang YD, Cheng XG, Zhou N, Rahaman MN, Liu ZT, Huang WH, Zhang CQ. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials. 2015;53:379–1.

    Article  CAS  Google Scholar 

  13. Ninan N, Muthiah M, Yahaya NAB, Park IK, Elain A, Wong TW, Thomas S, Grohens Y. Antibacterial and wound healing analysis of gelatin/zeolite scaffolds. Colloid Surf B Biointerfaces. 2014;115:244–2.

    Article  CAS  Google Scholar 

  14. Araya R, Gómez-Mora H, Vera R, Bastidas JM. Human spermatozoa motility analysis in a Ringer’s solution containing cupric ions. Contraception . 2003;67:161–3.

    Article  CAS  Google Scholar 

  15. Stanford JB, Mikolajczyk RT. Mechanisms of action of intrauterine devices: update and estimation of postfertilization effects. Am J Obstet Gynecol. 2002;187:1699–8.

    Article  Google Scholar 

  16. Cai SZ, Xia XP, Xie CS. Corrosion behavior of copper/LDPE nanocomposites in simulated uterine solution. Biomaterials. 2005;26:2671–6.

    Article  CAS  Google Scholar 

  17. Zhang WW, Xia XP, Qi C, Xie CS, Cai SZ. A porous Cu/LDPE composite for copper-containing intrauterine contraceptive devices. Acta Biomater. 2012;8:897–3.

    Article  CAS  Google Scholar 

  18. Grilloa CA, Reigosa MA, Lorenzo de Mele MAF. Does over-exposure to copper ions released from metallic copper induce cytotoxic and genotoxic effects on mammalian cells? Contraception . 2010;81:343–9.

    Article  Google Scholar 

  19. Shi Q, Fan QF, Ye W, Hou JW, Wong SC, Xu XD, Yin JH. Controlled lecithin release from a hierarchical architecture on blood-contacting surface to reduce hemolysis of stored red blood cells. ACS Appl Mater Interfaces. 2014;6:9808–4.

    Article  CAS  Google Scholar 

  20. Miro A, d’Angelo I, Nappi A, Manna PL, Biondi M, Mayol L, Musto P, Russo R, Rotonda MIL, Ungaro F, Quaglia F. Engineering poly(ethylene oxide) buccal films with cyclodextrin: a novel role for an old excipient? Int J Pharmceut. 2013;452:283–1.

    Article  CAS  Google Scholar 

  21. Martínez-Gómez A, Alvarez C, de Abajo J, del Campo A, Cortajarena AL, Rodriguez-Hernandez J. Poly(ethylene oxide) functionalized polyimide-based microporous films to prevent bacterial adhesion. ACS Appl Mater Interfaces. 2015;7:9716–4.

    Article  Google Scholar 

  22. Sosnik A, das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog Polym Sci. 2014;39:2030–5.

    Article  CAS  Google Scholar 

  23. Tang Y, Xia XP, Wang Y, Xie CS. Study on the mechanical properties of Cu/LDPE composite IUDs. Contraception. 2011;83:255–2.

    Article  Google Scholar 

  24. Qi C, Xia XP, Zhang WW, Xie CS, Cai SZ. Indomethacin/Cu/LDPE porous composite for medicated copper intrauterine devices with controlled release performances. Compos Sci Technol. 2012;72:428–4.

    Article  CAS  Google Scholar 

  25. Mora N, Cano E, Mora EM, Bastidas JM. Influence of pH and oxygen on copper corrosion in simulated uterine fluid. Biomaterials . 2002;23:667–1.

    Article  CAS  Google Scholar 

  26. Cai SZ, Xia XP, Xie CS, Yang ZH. Cupric ion release controlled by copper/low-density polyethylene nanocomposite in simulated uterine solution. J Biomed Mater Res Part B. 2007;80B(1):220–5.

    Article  CAS  Google Scholar 

  27. Li W, Luo T, Yang YJ, Tan XN, Liu LF. Formation of controllable hydrophilic/hydrophobic drug delivery systems by electrospinning of vesicles. Langmuir . 2015;31:5141–6.

    Article  CAS  Google Scholar 

  28. Chrissopoulou K, Andrikopoulos KS, Fotiadou S, Bollas S, Karageorgaki C, Christofilos D, Voyiatzis GA, Anastasiadis SH. Crystallinity and chain conformation in PEO/layered silicate nanocomposites. Macromolecules . 2011;44:9710–2.

    Article  CAS  Google Scholar 

  29. Wang YY, Xia XP, Xiao C, Zhang HP, Xie CS, Cai SZ. Anti-aging properties of the Cu/LDPE composite for intrauterine contraceptive devices. Compos Sci Technol. 2014;90:139–6.

    Article  CAS  Google Scholar 

  30. Xia XP, Cai SZ, Xie CS. Preparation, structure and thermal stability of Cu/LDPE nanocomposites. Mater Chem Phys. 2006;95:122–9.

    Article  CAS  Google Scholar 

  31. Su ZQ, Li JF, Li Q, Ni TY, Wei G. Chain conformation, crystallization behavior, electrical and mechanical properties of electrospun polymer-carbon nanotube hybrid nanofibers with different orientations. Carbon . 2012;50:5605–7.

    Article  CAS  Google Scholar 

  32. Zheng XL, Xu Q. Comparison Study of morphology and crystallization behavior of polyethylene and poly(ethylene oxide) on single-walled carbon nanotubes. J Phys Chem B. 2010;114:9435–4.

    Article  CAS  Google Scholar 

  33. Kim GM, Wutzler A, Radusch HJ, Michler GH, Simon P, Sperling RA, Parak WJ. One-dimensional arrangement of gold nanoparticles by electrospinning. Chem Mater. 2005;17:4949–7.

    Article  CAS  Google Scholar 

  34. Wang MY, Wu PY, Sengupta SS, Chadhary BI, Cogen JM, Li B. Investigation of water diffusion in low-density polyethylene by attenuated total reflectance fourier transform infrared spectroscopy and two-dimensional correlation analysis. Ind Eng Chem Res. 2011;50:6447–4.

    Article  CAS  Google Scholar 

  35. Mural PKS, Kumar B, Madras G, Bose S. Chitosan immobilized porous polyolefin as sustainable and efficient antibacterial membranes. ACS Sustain. Chem Eng. 2016;4:862–0.

    CAS  Google Scholar 

  36. Mitra D, Li M, Kang ET, Neoh KG. Transparent copper-loaded chitosan/silica antibacterial coatings with long-term efficacy. ACS Appl Mater Interfaces. 2017;9:29515–5.

    Article  CAS  Google Scholar 

  37. Liu SL, Shao L, Mei LC, Lau CH, Wang H, Quan S. Recent progress in the design of advanced PEO-containing membranes for CO2 removal. Prog Polym Sci. 2013;38:1089–0.

    Article  CAS  Google Scholar 

  38. Samanta P, Thangapandian V, Singh S, Srivastava R, Nandan B, Liu CL, Chen HL. Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. Soft Matter. 2016;12:5110–0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supported by the Self-determined and Innovative Research Funds of HUST (2172012YLQX002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianping Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tang, Y., Xia, X. et al. Role of poly(ethylene oxide) in copper-containing composite used for intrauterine contraceptive devices. J Mater Sci: Mater Med 29, 92 (2018). https://doi.org/10.1007/s10856-018-6103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6103-z

Navigation