Skip to main content

Advertisement

Log in

Poly-L-ornithine/fucoidan-coated calcium carbonate microparticles by layer-by-layer self-assembly technique for cancer theranostics

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Recently, the layer-by-layer (LbL) self-assembly technology has attracted the enormous interest of researchers in synthesizing various pharmaceutical dosage forms. Herewith, we designed a biocompatible drug delivery system containing the calcium carbonate microparticles (CaCO3 MPs) that coated with the alternatively charged polyelectrolytes, i.e., poly-L-ornithine (PLO)/fucoidan by LbL self-assembly process (LbL MPs). Upon coating with the polyelectrolytes, the mean particle size of MPs obtained from SEM observations increased from 1.91 to 2.03 μm, and the surface of LbL MPs was smoothened compared to naked CaCO3 MPs. In addition, the reversible zeta potential changes have confirmed the accomplishment of layer upon a layer assembly. To evaluate the efficiency of cancer therapeutics, we loaded doxorubicin (Dox) in the LbL MPs, which resulted in high (69.7%) drug encapsulation efficiency. The controlled release of Dox resulted in the significant antiproliferative efficiency in breast cancer cell line (MCF-7 cells), demonstrating the potential of applying this innovative drug delivery system in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bugger H, Guzman C, Zechner C, Palmeri M, Russell KS, Russell RR, III. Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol. 2011;67:1381–8. https://doi.org/10.1007/s00280-010-1441-7.

    Article  CAS  Google Scholar 

  2. Kumari R, Sharma A, Ajay AK, Bhat MK. Mitomycin C induces bystander killing in homogeneous and heterogeneous hepatoma cellular models. Mol Cancer. 2009;8:87–106. https://doi.org/10.1186/1476-4598-8-87.

    Article  CAS  Google Scholar 

  3. Zhang Q, Shan W, Ai C, Chen Z, Zhou T, Lv X, et al. Construction of multifunctional Fe3O4-MTX@HBc nanoparticles for MR imaging and photothermal therapy/chemotherapy. Nanotheranostics. 2018;2:87–95.

    Article  Google Scholar 

  4. Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater.2018;65:393–404.

    Article  Google Scholar 

  5. Singh N, Sachdev A, Gopinath P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J Nanosci Nanotechnol. 2018;18:1534–41.

    Article  Google Scholar 

  6. Li Z, Wang G, Shen Y, Guo N, Ma N. DNA-templated magnetic nanoparticle-quantum dot polymers for ultrasensitive capture and detection of circulating tumor cells. Adv Funct Mater. 2018;28:1–11.

    CAS  Google Scholar 

  7. Wei W, Ma GH, Hu G, Yu D, Mcieish T, Su ZG, et al. Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. JACS. 2008;130:15808–10.

    Article  CAS  Google Scholar 

  8. Cheang T-y, Wang S-m, Hu Z-j, Xing Z-H, Chang G-q, Yao C, et al. Calcium carbonate/CaIP6 nanocomposite particles as gene delivery vehicles for human vascular smooth muscle cells. J Mater Chem. 2010;20:8050-5. https://doi.org/10.1039/c0jm00852d.

  9. Peng C, Zhao Q, Gao C. Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayers-coated CaCO3 microparticles. Colloids Surf A Physicochem Eng Asp. 2010;353:132–9. https://doi.org/10.1016/j.colsurfa.2009.11.004.

    Article  CAS  Google Scholar 

  10. Liang P, Zhao D, Wang CQ, Zong JY, Zhuo RX, Cheng SX. Facile preparation of heparin/CaCO3/CaP hybrid nano-carriers with controllable size for anticancer drug delivery. Colloids Surf B. 2013;102:783–8. https://doi.org/10.1016/j.colsurfb.2012.08.056.

    Article  CAS  Google Scholar 

  11. Zhao D, Liu CJ, Zhuo RX, Cheng SX. Alginate/CaCO3 hybrid nanoparticles for efficient codelivery of antitumor gene and drug. Mol Pharm. 2012;9:2887–93. https://doi.org/10.1021/mp3002123.

    Article  CAS  Google Scholar 

  12. Wu JL, Wang CQ, Zhuo RX, Cheng SX. Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloids Surf B. 2014;123:498–505. https://doi.org/10.1016/j.colsurfb.2014.09.047.

    Article  CAS  Google Scholar 

  13. Du C, Shi J, Shi J, Zhang L, Cao S. PUA/PSS multilayer coated CaCO3 microparticles as smart drug delivery vehicles. Mater Sci Eng C Mater Biol Appl. 2013;33:3745–52. https://doi.org/10.1016/j.msec.2013.05.004.

    Article  CAS  Google Scholar 

  14. Volodkin DV, Larionova NI, Sukhorukov GB. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules. 2004;5:1962–72. https://doi.org/10.1021/bm049669e.

    Article  CAS  Google Scholar 

  15. Sukhorukov GB, Volodkin DV, Günther AM, Petrov AI, Shenoy DB, Möhwald H. Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J Mater Chem. 2004;14:2073–81. https://doi.org/10.1039/b402617a.

    Article  CAS  Google Scholar 

  16. Wang P, Liu Y, Wang S. Research progress of layer-by-layer self-assembled nanocarriers for cancer treatment. Chin Sci Bull. 2017;62:1233–40. https://doi.org/10.1360/n972016-01417.

    Article  Google Scholar 

  17. Wang J CJ, Zong JY, Zhao D, Li F, Zhuo RX, Cheng SX. Calcium carbonate/carboxymethyl chitosan hybrid microspheres and nanospheres for drug delivery. J Phys Chem C. 2010;114:18940–5.

    Article  CAS  Google Scholar 

  18. Fan JQ, Yuangang L, Wang SB, Liu YL, Li SM, Long RM, Zhang R, Kankala RK. Synthesis and characterization of innovative poly(lactide-co-glycolide) - (poly-L-ornithine/fucoidan) core-shell nanocarriers by layer-by-layer self-assembly. RSC Adv. 2017;7:32786–94. https://doi.org/10.1039/C7RA04908K.

    Article  CAS  Google Scholar 

  19. Khan F, Liu P, Yang S, Ma Y, Qiu Y. Concentration-dependent dye aggregation in the LbL-assembly of fluorescein isothicyanate labeled poly(allylamine hydrochloride) and poly(acrylic acid) on cotton fabrics. Dyes Pigments. 2017;142:358–64. https://doi.org/10.1016/j.dyepig.2017.03.054.

    Article  CAS  Google Scholar 

  20. Bhalerao UM, Acharya J, Halve AK, Kaushik MP. Controlled drug delivery of antileishmanial chalcones from Layer-by-Layer (LbL) self assembled PSS/PDADMAC thin films. RSC Adv. 2014;4:4970–7.

    Article  CAS  Google Scholar 

  21. Ganas C, Weiss A, Nazarenus M, Rosler S, Kissel T, Rivera Gil P, et al. Biodegradable capsules as non-viral vectors for in vitro delivery of PEI/siRNA polyplexes for efficient gene silencing. J Control Release. 2014;196:132–8. https://doi.org/10.1016/j.jconrel.2014.10.006.

    Article  CAS  Google Scholar 

  22. Chen MX, Li BK, Yin DK, Liang J, Li SS, Peng DY. Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery. Carbohydr Polym. 2014;111:298–304. https://doi.org/10.1016/j.carbpol.2014.04.038.

    Article  CAS  Google Scholar 

  23. Feng W, Zhou X, He C, Qiu K, Nie W, Chen L, et al. Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility. J Mater Chem B. 2013;1:5886–98. https://doi.org/10.1039/c3tb21193b.

    Article  CAS  Google Scholar 

  24. Ramos AP, Doro FG, Tfouni E, Gonçalves RR, Zaniquelli MED. Surface modification of metals by calcium carbonate thin films on a layer-by-layer polyelectrolyte matrix. Thin Solid Films. 2008;516:3256–62. https://doi.org/10.1016/j.tsf.2007.12.047.

    Article  CAS  Google Scholar 

  25. Darrabie MD, Kendall WF Jr, Opara EC. Characteristics of poly-L-ornithine-coated alginate microcapsules. Biomaterials. 2005;26:6846–52. https://doi.org/10.1016/j.biomaterials.2005.05.009.

    Article  CAS  Google Scholar 

  26. Deepika S, Hait SK, Christopher J, Chen Y, Hodgson P, Tuli DK. Preparation and evaluation of hydrophobically modified core shell calcium carbonate structure by different capping agents. Powder Technol.2013;235:581–9.https://doi.org/10.1016/j.powtec.2012.11.015.

    Article  CAS  Google Scholar 

  27. Kamiya Y, Yamaki T, Uchida M, Hatanaka T, Kimura M, Ogihara M, et al. Preparation and evaluation of PEGylated poly-L-orinithine complex as a novel absorption enhancer. Biol Pharm Bull. 2017;40:205–11.

    Article  CAS  Google Scholar 

  28. Brunetti P, Basta G, Faloerni A, Calcinaro F, Pietropaolo M, Calafiore R. Immunoprotection of pancreatic islet grafts within artificial microcapsules. Int J Artif Organs. 1991;14:789–91.

    Article  CAS  Google Scholar 

  29. Calafiore R, Basta G, Boselli C, Bufalari A, Giustozzi GM, Luca G, et al. Effects of alginate/polyaminoacidic coherent microcapsule transplantation in adult pigs. Transplant Proc. 1997;29:2126–7.

  30. Tam SK, Bilodeau S, Dusseault J, Langlois G, Halle JP, Yahia LH. Biocompatibility and physicochemical characteristics of alginate-polycation microcapsules. Acta Biomater. 2011;7:1683–92. https://doi.org/10.1016/j.actbio.2010.12.006.

    Article  CAS  Google Scholar 

  31. Kwak JY. Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs. 2014;12:851–70. https://doi.org/10.3390/md12020851.

    Article  CAS  Google Scholar 

  32. Wahab R, Dwivedi S, Khan F, Mishra YK, Hwang IH, Shin HS, et al. Statistical analysis of gold nanoparticle-induced oxidative stress and apoptosis in myoblast (C2C12) cells. Colloids Surf B. 2014;123:664–72. https://doi.org/10.1016/j.colsurfb.2014.10.012.

    Article  CAS  Google Scholar 

  33. Ramasamy T, Haidar ZS, Tran TH, Choi JY, Jeong JH, Shin BS, et al. Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater. 2014;10:5116–27. https://doi.org/10.1016/j.actbio.2014.08.021.

    Article  CAS  Google Scholar 

  34. Xu X, Lü S, Gao C, Bai X, Feng C, Gao N, et al. Multifunctional drug carriers comprised of mesoporous silica nanoparticles and polyamidoamine dendrimers based on layer-by-layer assembly. Mater Des. 2015;88:1127–33. https://doi.org/10.1016/j.matdes.2015.09.069.

    Article  CAS  Google Scholar 

  35. Pande S, Tandon P, Gupta VD. Vibrational dynamics and heat capacity of poly(l-ornithine). J Macromol Sci B. 2007;41:117–36. https://doi.org/10.1081/mb-120002350.

    Article  Google Scholar 

  36. Brunot C, Ponsonnet L, Lagneau C, Farge P, Picart C, Grosgogeat B. Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomaterials. 2007;28:632–40.

  37. Cheng L, Yang K, Chen Q, Liu Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano. 2012;6:5605–13.

  38. Sato K, Seno M, Anzai J-I. Release of Insulin from calcium carbonate microspheres with and without layer-by-layer thin coatings. Polymers. 2014;6:2157–65. https://doi.org/10.3390/polym6082157.

    Article  Google Scholar 

  39. Chao P, Deshmukh M, Kutscher HL, Gao D, Rajan SS, Hu P, et al. Pulmonary targeting microparticulate camptothecin delivery system: anticancer evaluation in a rat orthotopic lung cancer model. Anti-Cancer Drugs. 2010;21:65–76. https://doi.org/10.1097/CAD.0b013e328332a322.

    Article  CAS  Google Scholar 

  40. Foster KA, Yazdanian M, Audus KL. Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. J Pharm Pharmacol. 2010;53:57–66.

    Article  Google Scholar 

  41. Liu B-Y, Wu C, He X-Y, Zhuo R-X, Cheng S-X. Multi-drug loaded vitamin E-TPGS nanoparticles for synergistic drug delivery to overcome drug resistance in tumor treatment. Sci Bull. 2016;61:552–60. https://doi.org/10.1007/s11434-016-1039-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Financial support from National marine economic innovation and development project (16PYY007SF17), the Science Research Foundation of National Health and Family Planning Commission of PRC & United Fujian Provincial Health and Education Project for Tacking the Key Research (WKJ2016-2-22), the Program for New Century Excellent Talents in Fujian Province University (2014FJ-NCET-ZR01), the Promotion Program for Young and Middle-aged Teachers in Science and Technology Research of Huaqiao University (ZQN-PY108) and Subsidized Project for Postgraduates’ Innovative Fund in Scientific Research of Huaqiao University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuangang Liu or Shibin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Kankala, R.K., Fan, J. et al. Poly-L-ornithine/fucoidan-coated calcium carbonate microparticles by layer-by-layer self-assembly technique for cancer theranostics. J Mater Sci: Mater Med 29, 68 (2018). https://doi.org/10.1007/s10856-018-6075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6075-z

Navigation