Skip to main content
Log in

Electrochemical characterization and in-vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The degradation of magnesium alloys, AZ31B and AZ91E, are under review due to a their ability to degrade under physiological conditions and successively yield an oxidized biocompatible by-product which can safely be absorbed by the body. By exploiting the biodegradability of magnesium alloys, the prospects of developing an unprecedented class of implant are at hand. To do so however, the rate of corrosion of the alloys must be modified in order to better suit physiological conditions. Therefore, anodization was carried out on AZ31B and AZ91E specimens to alter the surface chemistry to reduce the corrosion rates and improve biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter, were used to characterize and compare the surfaces of untreated and anodized magnesium alloys. Corrosion behavior was evaluated by electrochemical tests using potentiodynamic polarization and electrochemical impedance spectroscopy, to verify changes in corrosion rates as a result of anodization. Finally, a bio-assessment using MTS assays and fluorescent microscopy were carried out to ensure that the anodization process had no compromise on the biocompatibility of the magnesium alloys. The study indicated that the anodization process did alter the surface chemistry of the alloys, yielding slower corrosion rates, while causing no adverse effects in regards to biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Witte F, Calliess T, Windhagen H. Biodegradable synthetic implant materials: clinical applications and immunological aspects. Orthopade. 2008;37:125–30.

    Article  Google Scholar 

  2. Salahshoor M, Guo Y. Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance. Materials. 2012;5:135–55.

    Article  Google Scholar 

  3. Gray-Munro JE, Seguin C, Strong M. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. J Biomed Mater Res A. 2009;91:221–30.

    Article  Google Scholar 

  4. Hanada K, Matsuzaki K, Huang X, Chino Y. Fabrication of Mg alloy tubes for biodegradable stent application. Mater Sci Eng C. 2013;33:4746–50.

    Article  Google Scholar 

  5. Zhang E, Xu L, Yu G, Pan F, Yang K. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A. 2009;90:882–93.

    Article  Google Scholar 

  6. Fekry AM, El-Sherif RM. Electrochemical corrosion behavior of magnesium and titanium alloys in simulated body fluid. Electrochim Acta. 2009;54:7280–5.

    Article  Google Scholar 

  7. Song G. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49:1696–701.

    Article  Google Scholar 

  8. Pompa L, Rahman ZU, Munoz E, Haider W. Surface characterization and cytotoxicity response of biodegradable magnesium alloys. Mater Sci Eng C. 2015;49:761–8.

    Article  Google Scholar 

  9. Wu G, Ibrahim JM, Chu PK. Surface design of biodegradable magnesium alloys—a review. Surf Coat Technol. 2013;233:2–12.

    Article  Google Scholar 

  10. Walter R, Kannan MB, He Y, Sandham A. Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy. Appl Surf Sci. 2013;279:343–8.

    Article  Google Scholar 

  11. Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater. 1999;1:11–33.

    Article  Google Scholar 

  12. Wang J, Tang J, Zhang P, Li Y, Wang J, Lai Y, Qin L. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. J Biomed Mater Res B Appl Biomater. 2012;100:1691–701.

    Article  Google Scholar 

  13. NuLi Y, Yang J, Wang J, Xu J, Wang P. Electrochemical magnesium deposition and dissolution with high efficiency in ionic liquid. Electrochem Solid State Lett. 2005;8:C166–9.

    Article  Google Scholar 

  14. Shashikala AR, Umarani R, Mayanna SM, Sharma AK. Chemical conversion coatings on magnesium alloys—a comparative study. Int J Electrochem Sci. 2008;3:993–1004.

    Google Scholar 

  15. Shi P, Ng WF, Wong MH, Cheng FT. Improvement of corrosion resistance of pure magnesium in Hanks’ solution by microarc oxidation with sol-gel TiO2 sealing. J Alloys Compd. 2009;469:286–92.

    Article  Google Scholar 

  16. Wu HL, Cheng YL, Li LL, Chen ZH, Wang HM, Zhang Z. The anodization of ZK60 magnesium alloy in alkaline solution containing silicate and the corrosion properties of the anodized films. Appl Surf Sci. 2007;253:9387–94.

    Article  Google Scholar 

  17. Chai L, Yu X, Yang Z, Wang Y, Okido M. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking. Corros Sci. 2008;50:3274–9.

    Article  Google Scholar 

  18. Textor M, Sittig C, Frauchiger V, Tosatti S, Brunette DM. Properties and biological significance of natural oxide films on titanium and its alloys. In: Brunette DM, Tengvall P, Textor M, Thomson P, editors. Titanium in medicine. Berlin: Springer; 2001.

    Google Scholar 

  19. Li N, Zheng Y. Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol. 2013;29:489–502.

    Article  Google Scholar 

  20. Gill PK. Assessment of biodegradable magnesium alloys for enhaned Mechanical & biocompatibility properties. 2012 FIU Electronic Theses and Dissertations. Paper 714.

  21. ASTM (G102–89) Standard practice for calculation of corrosion rates and related information from electrochemical measurements. Annual book of ASTM standards, vol. 89. ATSM; 2010. p. 1–7.

  22. ASTM (G3-89) Standard practice for conventions applicable to electrochemical measurements in corrosion testing.pdf.

  23. Xu L, Zhang E, Yang K. Phosphating treatment and corrosion properties of Mg-Mn-Zn alloy for biomedical application. J Mater Sci Mater Med. 2009;20:859–67.

    Article  Google Scholar 

  24. Salman S, Mori R, Ichino R, Okido M. Effect of anodizing potential on the surface morphology and corrosion property of AZ31 magnesium alloy. Mater Trans. 2010;51(6):1109–13.

    Article  Google Scholar 

  25. El Mahallawy N. AZ91 magnesium alloys: anodizing of using environmental friendly electrolytes. J Surf Eng Mater Adv Technol. 2011;01(02):62–72.

    Google Scholar 

  26. Rahman Z, Pompa L, Haider W. Influence of electropolishing and magnetoelectropolishing on corrosion and biocompatibility of titanium implants. J Mater Eng Perform. 2014;23:3907–15.

    Article  Google Scholar 

  27. Lopez-Alvarez M, Rodriguez-Valencia C, Serra J, Gonalez P. Bio-inspired ceramics: promising scaffolds for bone tissue engineering. Proc Eng. 2013;59:51–8.

    Article  Google Scholar 

  28. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med. 1996;7:329–45.

    Article  Google Scholar 

  29. Ungersbock A, Rahn B. Methods to characterize the surface roughness of metallic implants. J Mater Sci Mater Med. 1994;5:434–40.

    Article  Google Scholar 

  30. Young T. An Essay on the Cohesion of Fluids. Philos Trans R Soc Lond. 1805;95:65–87.

    Article  Google Scholar 

  31. Yuan Y, Lee TR. Contact angle and wetting properties. Surface Science Techniques, vol. 51. Springer: Berlin; 2013. p. 1–34.

    Chapter  Google Scholar 

  32. De Gennes PG. Wetting: statics and dynamics. Rev Mod Phys. 1985;57:827–63.

    Article  Google Scholar 

  33. Haider W, Munroe N, Pulletikurthi C, Gill P, Amruthaluri S. A comparative biocompatibility analysis of ternary nitinol alloys. J Mater Eng Perform. 2009;18(5–6):760–4.

    Article  Google Scholar 

  34. Feng B, Chen JY, Qi SK, He L, Zhao JZ, Zhang XD. Characterization of surface oxide films on titanium and bioactivity. J Mater Sci Mater Med. 2002;13:457–64.

    Article  Google Scholar 

  35. Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C. 2003;23:551–60.

    Article  Google Scholar 

  36. Subbiahdoss G, Grijpma DW, van der Mei HC, Busscher HJ, Kuijer R. Microbial biofilm growth versus tissue integration on biomaterials with different wettabilities and a polymer-brush coating. J Biomed Mater Res A. 2010;94:533–8.

    Google Scholar 

  37. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th ed. New York: W. H. Freeman and co; 2006. p. 1120.

    Google Scholar 

  38. Witte F, Fischer J, Nellesen J, Crostack H-A, Kaese V, Pisch A, Beckmann F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013–8.

    Article  Google Scholar 

  39. Xin Y. Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J Mater Res. 2007;22:2004–11.

    Article  Google Scholar 

  40. Xin Y, Huo K, Tao H, Tang G, Chu PK. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 2008;4:2008–15.

    Article  Google Scholar 

  41. Electrochemistry P, Elements C, Equivalent C, Models C. Basics of electrochemical impedance spectroscopy. Appl Note AC. 2010;286:R491–7.

    Google Scholar 

  42. Ates M. Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Prog Org Coat. 2011;71:1–10.

    Article  Google Scholar 

  43. Chang B-Y, Park S-M. Electrochemical impedance spectroscopy. Annu Rev Anal Chem. 2010;3:207–29.

    Article  Google Scholar 

  44. Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett. 2008;62:3276–9.

    Article  Google Scholar 

  45. Xu R, Yang X, Suen KW, Wu G, Li P, Chu PK. Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation atomic concentration (%). Appl Surf Sci. 2012;263:608–12.

    Article  Google Scholar 

  46. Fischer J, Pröfrock D, Hort N, Willumeit R, Feyerabend F. Improved cytotoxicity testing of magnesium materials. Mater Sci Eng B. 2011;176(11):830–4.

    Article  Google Scholar 

  47. Kim K. Scaffold design parameters to simulate the osteogenic signal expression for bone tissue engineering applications. Ph.D. Thesis, University of Maryland, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem Haider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, Z.U., Pompa, L. & Haider, W. Electrochemical characterization and in-vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials. J Mater Sci: Mater Med 26, 217 (2015). https://doi.org/10.1007/s10856-015-5545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5545-9

Keywords

Navigation