Skip to main content
Log in

Carbon quantum dots: synthesis, characterization, and assessment of cytocompatibility

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A simple method for the synthesis of water-soluble carbon quantum dots (CQDs) has been developed by chemical oxidation treatment of the flour. The as-synthesized CQDs were monodispersed sphere particles with the approximate diameter of 5–8 nm, and exhibited strong fluorescence, excitation-dependent photoluminescence behavior and high photostability in a wide range of pH values. We investigated the cytotoxicity of as-prepared CQDs using rat mesangial cells (RMC). Compared with CdTe quantum dots, CQDs show no apparent cytotoxicity and much better biosafety property. The as-synthesized CQDs were also tested to label and image RMC in vitro and demonstrated to be highly promising biological fluorescent probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small. 2005;1:172–9.

    Article  Google Scholar 

  2. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–44.

    Article  Google Scholar 

  3. Li H, Kang Z, Liu Y, Lee ST. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22:24230–53.

    Article  Google Scholar 

  4. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater. 2011;23:H18–40.

    Article  Google Scholar 

  5. Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–8.

    Article  Google Scholar 

  6. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49.

    Article  Google Scholar 

  7. Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114:165–72.

    Article  Google Scholar 

  8. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl. 2010;49:6726–44.

    Article  Google Scholar 

  9. Yang ST, Cao L, Luo PG, Lu F, Wang X, Wang H, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131:11308–9.

    Article  Google Scholar 

  10. Esteves da Silva JCG, Goncalves HMR. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal Chem. 2011;30:1327–36.

    Article  Google Scholar 

  11. Li Q, Ohulchanskyy TY, Liu RL, Koynov K, Wu DQ, Best A, et al. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J Phys Chem C. 2010;114:12062–8.

    Article  Google Scholar 

  12. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126:12736–7.

    Article  Google Scholar 

  13. Wang X, Cao L, Lu FS, Meziani MJ, Li H, Qi G, et al. Photoinduced electron transfers with carbon dots. Chem Commun. 2009;25:3774–6.

    Article  Google Scholar 

  14. Wang J, Wang CF, Chen S. Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem Int Ed. 2012;51:9297–301.

    Article  Google Scholar 

  15. Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun. 2008;41:5116–8.

    Article  Google Scholar 

  16. Zheng LY, Chi YW, Dong YQ, Lin JP, Wang BB. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc. 2009;131:4564–5.

    Article  Google Scholar 

  17. Krysmann MJ, Kelarakis A, Giannelis EP. Photoluminescent carbogenic nanoparticles directly derived from crude biomass. Green Chem. 2012;14:3141–5.

    Article  Google Scholar 

  18. Yang ZC, Wang M, Yong AM, Wong SY, Zhang XH, Tan H, et al. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem Commun. 2011;47:11615–7.

    Article  Google Scholar 

  19. Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S. Nanosized carbon particles from natural gas soot. Chem Mater. 2009;21:2803–9.

    Article  Google Scholar 

  20. Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater. 2009;21:5563–5.

    Article  Google Scholar 

  21. Li H, He X, Liu Y, Huang H, Lian S, Lee ST, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon. 2011;49:605–9.

    Article  Google Scholar 

  22. Pandey S, Mewada A, Thakur M, Pillai S, Dharmattii R, Phadke C, et al. Synthesis of mesoporous silica oxide/C-dot complex (meso-SiO2/C-dots) using pyrolysed rice husk and its application in bioimaging. RSC Adv. 2014;4:1174–9.

    Article  Google Scholar 

  23. Das B, Dadhich P, Pal P, Srivas PK, Bankoti K, Dhara S. Carbon nanodots from date molasses: new nanolights for the in vitro scavenging of reactive oxygen species. J Mater Chem B. 2014;2:6839–47.

    Article  Google Scholar 

  24. Li MY, Ge YX, Chen QF, Xu SK, Wang NZ, Zhang XJ. Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors’ concentration and their conjunction with BSA as biological fluorescent probes. Talanta. 2007;72:89–94.

    Article  Google Scholar 

  25. Wang QL, Huang XX, Long YJ, Wang XL, Zhang HJ, Zhu R, et al. Hollow luminescent carbon dots for drug delivery. Carbon. 2013;59:192–9.

    Article  Google Scholar 

  26. Xu ZH, Yu JG, Liu G. Fabrication of carbon quantum dots and their application for efficient detecting Ru(bpy) 2+3 in the solution. Sens Actuators B. 2013;181:209–14.

    Article  Google Scholar 

  27. Chen XF, Zhan WX, Wang QJ, Fan JY. C8-structured carbon quantum dots: synthesis, blue and green double luminescence, and origins of surface defects. Carbon. 2014;79:165–73.

    Article  Google Scholar 

  28. Liang QH, Ma WJ, Shi Y, Li Z, Yang XM. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon. 2013;60:421–8.

    Article  Google Scholar 

  29. Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U. Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem. 2009;81:6285–94.

    Article  Google Scholar 

  30. Kumar P, Meena R, Paulraj R, Chanchal A, Verma AK, Bohidar HB. Fluorescence behavior of non-functionalized carbon nanoparticles and their in vitro applications in imaging and cytotoxic analysis of cancer cells. Colloid Surf B. 2012;91:34–40.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by The Research and Innovation Project for Graduate Students Academic Degree of Colleges and Universities of Jiangsu Province (KYZZ_0185) and The National Natural Science Foundation of China (NSFC 81274056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengyu Yan or Jianqiu Chen.

Additional information

Zhengwei Zhang and Yu Duan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Duan, Y., Yu, Y. et al. Carbon quantum dots: synthesis, characterization, and assessment of cytocompatibility. J Mater Sci: Mater Med 26, 213 (2015). https://doi.org/10.1007/s10856-015-5536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5536-x

Keywords

Navigation