Skip to main content
Log in

pH-responsive collagen fibrillogenesis in confined droplets induced by vapour diffusion

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A novel methodology for the assembly of collagen fibrils in microliter drops is proposed. It consists in the gradual increase of pH by means of vapour diffusion coming from the decomposition of NH4HCO3 solutions. The pH increase rate as well as the final steady pH of solutions containing collagen can be adjusted by varying the concentration of NH4HCO3. Both parameters are of predominant importance in collagen fibrillogenesis. The effect of these parameters on the kinetic of the fibrillogenesis process and on the fibrils morphology was studied. We found that both the kinetic and the morphology are mainly driven by electrostatic interactions. A gradual increase of pH slows down the formation of collagen fibres and favours the lateral interaction between fibrils producing broader fibres. On the other hand, a rapid increase of pH reduces the lateral electrostatic interactions favouring the formation of thinner fibres. The formation of the D-band periodicity is also a pH-dependent process that occurs after fibrillogenesis when the most stable state of fibres formation has been reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Patino MG, Neiders ME, Andreana S, Noble B, Cohen RE. Collagen: an overview. Implant Dent. 2002;11:280–5.

    Article  Google Scholar 

  2. Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem. 2002;277:4223–31.

    Article  Google Scholar 

  3. Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 2003;13:264–9.

    Article  Google Scholar 

  4. Grinnell F. Fibroblast–collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 2000;10:362–5.

    Article  Google Scholar 

  5. Akiyama SK, Nagata K, Yamada KM. Cell surface receptors for extracellular matrix components. BBA Rev Biomembr. 1990;1031:91–110.

    Google Scholar 

  6. Salsas-Escat R, Stultz CM. The molecular mechanics of collagen degradation: implications for human disease. Exp Mech. 2009;49:65–77.

    Article  Google Scholar 

  7. Tsamis A, Krawiec JT, Vorp DA. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface. 2013;10:20121004.

    Article  Google Scholar 

  8. Kunicki TJ. The influence of platelet collagen receptor polymorphisms in hemostasis and thrombotic disease. Arterioscl Throm Vas. 2002;22:14–20.

    Article  Google Scholar 

  9. Kadler KE. Learning how mutations in type I collagen genes cause connective tissue disease. Int J Exp Pathol. 1993;74:319.

    Google Scholar 

  10. Liu Y, Ren L, Long K, Wang L, Wang Y. Preparation and characterization of a novel tobramycin-containing antibacterial collagen film for corneal tissue engineering. Acta Biomater. 2014;10:289–99.

    Article  Google Scholar 

  11. Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8:3191–200.

    Article  Google Scholar 

  12. Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–59.

    Article  Google Scholar 

  13. McFadden TM, Duffy GP, Allen AB, Stevens HY, Schwarzmaier SM, Plesnila N, et al. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen–glycosaminoglycan scaffold in vivo. Acta Biomater. 2013;9:9303–16.

    Article  Google Scholar 

  14. Iafisco M, Quirici N, Foltran I, Rimondini L. Electrospun collagen mimicking the reconstituted extracellular matrix improves osteoblastic differentiation onto titanium surfaces. J Nanosci Nanotechnol. 2013;13:4720–6.

    Article  Google Scholar 

  15. Mokrejs P, Langmaier F, Mladek M, Janacova D, Kolomaznik K, Vasek V. Extraction of collagen and gelatine from meat industry by-products for food and non food uses. Waste Manag Res. 2009;27:31–7.

    Article  Google Scholar 

  16. Sanders H, Iafisco M, Pouget EM, Bomans PHH, Nudelman F, Falini G, et al. The binding of CNA35 contrast agents to collagen fibrils. Chem Commun. 2011;47:1503–5.

    Article  Google Scholar 

  17. Alexander TN, Jamil A, Steven F, Rod JR. Cosmetic medicine: facial resurfacing and injectables. Plast Reconstr Surg. 2012;129:142e–53e.

    Article  Google Scholar 

  18. Peng Y, Howell L, Stoichevska V, Werkmeister J, Dumsday G, Ramshaw J. Towards scalable production of a collagen-like protein from Streptococcus pyogenes for biomedical applications. Microb Cell Fact. 2012;11:146.

    Article  Google Scholar 

  19. Kim BS, Choi JS, Kim JD, Yoon HI, Choi YC, Cho YW. Human collagen isolated from adipose tissue. Biotechnol Prog. 2012;28:973–80.

    Article  Google Scholar 

  20. Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials. 2008;29:1147–58.

    Article  Google Scholar 

  21. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929.

    Article  Google Scholar 

  22. Orgel JPRO, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ. The in situ supermolecular structure of type I collagen. Structure. 2001;9:1061–9.

    Article  Google Scholar 

  23. Hulmes DJ. Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol. 2002;137:2–10.

    Article  Google Scholar 

  24. Gómez-Morales J, Iafisco M, Delgado-López JM, Sarda S, Drouet C. Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Ch. 2013;59:1–46.

    Article  Google Scholar 

  25. Kadler KE, Hojima Y, Prockop D. Assembly of collagen fibrils de novo by cleavage of the type I pC-collagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self-assembly is a classical example of an entropy-driven process. J Biol Chem. 1987;262:15696–701.

    Google Scholar 

  26. Cooper A. Thermodynamic studies of the assembly in vitro of native collagen fibrils. Biochem J. 1970;118:355–65.

    Google Scholar 

  27. Leikin S, Rau DC, Parsegian VA. Temperature-favoured assembly of collagen is driven by hydrophilic not hydrophobic interactions. Nat Struct Biol. 1995;2:205–10.

    Article  Google Scholar 

  28. Harris JR, Soliakov A, Lewis RJ. In vitro fibrillogenesis of collagen type I in varying ionic and pH conditions. Micron. 2013;49:60–8.

    Article  Google Scholar 

  29. Li Y, Asadi A, Monroe MR, Douglas EP. pH effects on collagen fibrillogenesis in vitro: electrostatic interactions and phosphate binding. Mater Sci Eng, C. 2009;29:1643–9.

    Article  Google Scholar 

  30. Wood G, Keech M. The formation of fibrils from collagen solutions 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem J. 1960;75:588.

    Google Scholar 

  31. Wood G. The formation of fibrils from collagen solutions. 3. Effect of chondroitin sulphate and some other naturally occurring polyanions on the rate of formation. Biochem J. 1960;75:605.

    Google Scholar 

  32. Wood G. The formation of fibrils from collagen solutions. 2. A mechanism for collagen-fibril formation. Biochem J. 1960;75:598.

    Google Scholar 

  33. Hayashi T, Nagai Y. Factors affecting the interactions of collagen molecules as observed by in vitro fibril formation. II. Effects of species and concentration of anions. J Biochem. 1973;74:253–62.

    Google Scholar 

  34. Silver FH. Type I collagen fibrillogenesis in vitro. Additional evidence for the assembly mechanism. J Biol Chem. 1981;256:4973–7.

    Google Scholar 

  35. Brennan M, Davison PF. Influence of the telopeptides on type I collagen fibrillogenesis. Biopolymers. 1981;20:2195–202.

    Article  Google Scholar 

  36. Jiang F, Hörber H, Howard J, Müller DJ. Assembly of collagen into microribbons: effects of pH and electrolytes. J Struct Biol. 2004;148:268–78.

    Article  Google Scholar 

  37. Cisneros DA, Hung C, Franz CM, Muller DJ. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. J Struct Biol. 2006;154:232–45.

    Article  Google Scholar 

  38. Walton R, Brand D, Czernuszka J. Influence of telopeptides, fibrils and crosslinking on physicochemical properties of Type I collagen films. J Mater Sci Mater Med. 2010;21:451–61.

    Article  Google Scholar 

  39. Iafisco M, Gómez-Morales J, Hernández-Hernández MA, García-Ruiz JM, Roveri N. Biomimetic carbonate-hydroxyapatite nanocrystals prepared by vapor diffusion. Adv Eng Mater. 2010;12:B218–23.

    Article  Google Scholar 

  40. Ramírez-Rodríguez GB, Delgado-López JM, Gómez-Morales J. Evolution of calcium phosphate precipitation in hanging drop vapor diffusion by in situ Raman microspectroscopy. CrystEngComm. 2013;15:2206–12.

    Article  Google Scholar 

  41. Gómez-Morales J, Delgado-López JM, Iafisco M, Hernández-Hernández A, Prat M. Amino acidic control of calcium phosphate precipitation by using the vapor diffusion method in microdroplets. Cryst Growth Des. 2011;11:4802–9.

    Article  Google Scholar 

  42. Gómez-Morales J, Hernández-Hernandez A, Sazaki G, García-Ruiz JM. Nucleation and polymorphism of calcium carbonate by a vapor diffusion sitting drop crystallization technique. Cryst Growth Des. 2010;10:963–9.

    Article  Google Scholar 

  43. Iafisco M, Delgado-López JM, Gómez-Morales J, Hernández-Hernández MA, Rodríguez-Ruiz I, Roveri N. Formation of calcium phosphates by vapour diffusion in highly concentrated ionic micro-droplets. Cryst Res Technol. 2011;46:841–6.

    Article  Google Scholar 

  44. Hames BL. Gel electrophoresis of proteins: a practical approach. 3rd ed. Oxford: IRL Press; 1988.

    Google Scholar 

  45. Rodríguez-Ruiz I, Delgado-López JM, Durán-Olivencia MA, Iafisco M, Tampieri A, Colangelo D, et al. pH-responsive delivery of doxorubicin from citrate-apatite nanocrystals with tailored carbonate content. Langmuir. 2013;29:8213–21.

    Article  Google Scholar 

  46. Falini G, Fermani S, Foresti E, Parma B, Rubini K, Sidoti MC, et al. Films of self-assembled purely helical type I collagen molecules. J Mater Chem. 2004;14:2297–302.

    Article  Google Scholar 

  47. Muralidharan N, Jeya Shakila R, Sukumar D, Jeyasekaran G. Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. J Food Sci Technol. 2013;50:1106–13.

    Article  Google Scholar 

  48. Hattori S, Adachi E, Ebihara T, Shirai T, Someki I, Irie S. Alkali-treated collagen retained the triple helical conformation and the ligand activity for the cell adhesion via α2β1 integrin. J Biochem. 1999;125:676–84.

    Article  Google Scholar 

  49. Li Y, Douglas EP. Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils. Colloids Surf B. 2013;112:42–50.

    Article  Google Scholar 

  50. Gelman RA, Poppke DC, Piez KA. Collagen fibril formation in vitro. The role of the nonhelical terminal regions. J Biol Chem. 1979;254:11741–5.

    Google Scholar 

  51. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci. 1998;28:271–98.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been carried out within the frameworks of the projects from Spanish MINECO co-funded with FEDER (Projects MAT2011-28543 and Factoría de Cristalización, Consolider-Ingenio 2010), Junta de Andalucía (RMN 1344) and the Master in Crystallography and Crystallization (CSIC-UIMP). JMDL also acknowledges to the Spanish Servicio Público de Empleo Estatal (SEPE) for the funding during the writing of the manuscript. MI and AT would like to acknowledge the European projects SMILEY (FP7-NMP-2012-SMALL-6-310637) and OPHIS (FP7-NMP-2009-SMALL-3-246373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Delgado-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez-Rodríguez, G.B., Iafisco, M., Tampieri, A. et al. pH-responsive collagen fibrillogenesis in confined droplets induced by vapour diffusion. J Mater Sci: Mater Med 25, 2305–2312 (2014). https://doi.org/10.1007/s10856-014-5189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5189-1

Keywords

Navigation