Skip to main content

Advertisement

Log in

Optimizing the concentration of quaternary ammonium dimethacrylate monomer in bis-GMA/TEGDMA dental resin system for antibacterial activity and mechanical properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Four novel quaternary ammonium dimethacrylate monomers named IMQ (side alkyl chain length from 12 to 18) were synthesized with the aim to synthesize dental resin with antibacterial activity. All of IMQs were added into bis-GMA/TEGDMA dental resin system with a series of mass ratio (5, 10, and 20 wt%), double bond conversion (DC), flexural strength (FS), modulus of elasticity (FM) and biofilm formation inhibitory effect were studied. According to the results of DC, FS, FM, and the biofilm inhibitory effect, IMQ-16 containing polymer had the best comprehensive properties, and the optimal concentration of IMQ-16 in bis-GMA/TEGDMA dental resin would be in the range of 5–10 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He J, Liu F, Luo Y, Jia D. Synthesis and characterization of a dimethacrylates monomer with low shrinkage and water sorption of dental application. J Appl Polym Sci. 2012;125:114–20.

    Article  Google Scholar 

  2. He J, Söderling E, Vallittu PK, Lassila LVJ. Investigation of double bond conversion, mechanical properties, and antibacterial activity of dental resins with different alkyl chain length quaternary ammonium methacrylate monomers (QAM). J Biomater Sci Polym Ed. 2013;24:565–73.

    Article  Google Scholar 

  3. Kidd EAM. Caries diagnosis within restored teeth. Adv Dent Res. 1990;4:10–3.

    Google Scholar 

  4. Xu X, Wang Y, Liao S, Wen ZT, Fan Y. Synthesis and characterization of antibacterial dental monomers and composites. J Biomed Mater Res B. 2012;100B:1151–62.

    Article  Google Scholar 

  5. Weng Y, Guo X, Chong VJ, Howard L, Gregory RL, Xie D. Synthesis and evaluation of a novel antibacterial dental resin composite with quaternary ammonium salts. J Biomed Sci Eng. 2011;4:147–57.

    Article  Google Scholar 

  6. Weng Y, Howard L, Guo X, Chong VJ, Greogry RL, Xie D. A novel antibacterial resin composite for improved dental restoratives. J Mater Sci. 2012;23:1553–61.

    Google Scholar 

  7. Deligeorgi V, Mjor IA, Wilson NH. An overview of reasons for the placement and replacement of restorations. Prim Dent Care. 2001;8:5–11.

    Article  Google Scholar 

  8. Yamamoto K, Ohashi S, Aono M, Kokubo T, Yamada I, Yamauchi J. Antibacterial activity of silver ions implanted in SiO2 filler on oral Streptococci. Dent Mater. 1996;12:227–9.

    Article  Google Scholar 

  9. Osinaga PW, Grande RH, Ballester RY, Simonato MR, Delgado Rodrigues CR, Muench A. Zinc sulfate addition to glass-ionomer-based cements: influence on physical and antibacterial properties, zinc and fluoride release. Dent Mater. 2003;19:212–7.

    Article  Google Scholar 

  10. Shay DE, Allen TJ, Mantz RF. The antibacterial effects of some dental restorative materials. J Dent Res. 1956;35:25–32.

    Article  Google Scholar 

  11. Al-Musallam TA, Evans CA, Drummond JL, Matasa C, Wu CD. Antimicrobial properties of an orthodontic adhesive combined with cetylpyridinium chloride. Am J Orthod Dentofac Orthop. 2006;129:245–51.

    Article  Google Scholar 

  12. Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil. 1983;10:373–81.

    Article  Google Scholar 

  13. Wilson SJ, Wilson HJ. The release of chlorhexidine from modified dental acrylic resin. J Oral Rehabil. 1993;20:311–9.

    Article  Google Scholar 

  14. Waltimo T, Luo G, Samaranayake LP, Vallittu PK. Glass fiber-reinforced composite laced with chlorhexidine digluconate and yeast adhesion. J Mater Sci. 2004;15:117–21.

    Google Scholar 

  15. Lahdenperä MS, Puska MA, Alander PM, Waltimo T, Vallittu PK. Release of chlorhexidine digluconate and flexural properties of glass fiber reinforced provisional fixed partial denture polymer. J Mater Sci. 2004;15:1349–53.

    Google Scholar 

  16. Imazato S, Torii M, Tsuchitani Y. Immobilization of an antibacterial component in composite resin. Dent Jpn. 1993;30:63–8.

    Google Scholar 

  17. Xiao Y-H, Chen J-H, Fang M, Xing X-D, Wang H, Wang Y-J, et al. Antibacterial effects of three experimental quaternary ammonium salt (QAS) monomers on bacteria associated with oral infections. J Oral Sci. 2008;50:323–7.

    Article  Google Scholar 

  18. Xie D, Weng Y, Guo X, Zhao J, Gregory RL, Zheng C. Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dent Mater. 2011;27:487–96.

    Article  Google Scholar 

  19. Antonucci JM, Zeiger DN, Tang K, Lin-Gibson S, Fowler BO, Lin NJ. Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent Mater. 2012;28:219–28.

    Article  Google Scholar 

  20. Xu X, Wang Y, Liao S, Wen ZT, Fan Y. Synthesis and characterization of antibacterial dental monomers and composites. J Biomed Mater Res. 2012;100B:1151–62.

    Article  Google Scholar 

  21. He J, Söderling E, Österblad M, Vallittu PK, Lassila LVJ. Synthesis of methacrylate monomers with antibacterial effects against S. mutans. Molecules. 2011;16:9755–63.

    Article  Google Scholar 

  22. Liang X, Huang Q, Liu F, He J, Lin Z. Synthesis of novel antibacterial monomers (UDMQA) and their potential application in dental resin. J Appl Polym Sci. 2013;129:3373–81.

    Article  Google Scholar 

  23. Huang L, Xiao YH, Xing XD, Li F, Ma S, Qi LL, et al. Antibacterial activity and cytotoxicity of two novel cross-linking antibacterial monomers on oral pathogens. Arch Oral Biol. 2011;56:267–373.

    Google Scholar 

  24. He J, Söderling E, Lassila LVJ, Vallittu PK. Incorporation of an antibacterial and radiopaque monomer into dental resin system. Dent Mater. 2012;28:e110–7.

    Article  Google Scholar 

  25. He J, Söderling E, Vallittu PK, Lassila LVJ. Preparation and evaluation of dental resin with antibacterial and radio-opaque functions. Int J Mol Sci. 2013;14:5445–60.

    Article  Google Scholar 

  26. Ebi N, Imazato S, Noiri Y, Ebisu S. Inhibitory effects of resin composite containing bactericide-immobilized filler on plaque accumulation. Dent Mater. 2001;17:485–91.

    Article  Google Scholar 

  27. Tanner J, Robinson C, Söderling E, Vallittu P. Early plaque formation on fibre-reinforced composites in vivo. Clin Oral Investig. 2005;9:154–60.

    Article  Google Scholar 

  28. Lassila LV, Garoushi S, Tanner J, Vallittu PK, Söderling E. Adherence of Streptococcus mutans to fiber-reinforced filling composite and conventional restorative materials. Open Dent J. 2009;3:227–32.

    Article  Google Scholar 

  29. Imazato S, Torii M, Tsuchitani Y, McCabe JF, Russell RR. Incorporation of bacterial inhibitor into resin composite. J Dent Res. 1994;73:1437–43.

    Google Scholar 

  30. Xiao Y-H, Ma S, Chen J-H, Chai Z-G, Li F, Wang Y-J. Antibacterial activity and bonding ability of an adhesive incorporating an antibacterial monomer DMAE-CB. J Biomed Mater Res. 2009;90(2):813–7.

    Article  Google Scholar 

  31. Alshali RZ, Silikas N, Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater. 2013;29:e213–7.

    Article  Google Scholar 

  32. Ferracane J, Greener E. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomed Mater Res. 1986;20:121–31.

    Article  Google Scholar 

  33. Tanzer JM, Livingston J, Thompson AM. The microbiology of primary dental caries in human. J Dent Educ. 2001;65:1028–37.

    Google Scholar 

  34. Lu G, Wu D, Fu R. Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. React Funct Polym. 2007;67:355–66.

    Article  Google Scholar 

  35. Rawlinson LA, Ryan SM, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ. Antibacterial effects of poly(2-(dimethyamino ethyl)methacrylate) against selected gram-positive and gram-negative bacteria. Biomacromolecules. 2010;11:443–53.

    Article  Google Scholar 

  36. Salahuddin N, Badr B, Abdeen R. Synthesis and antimicrobial activity of biocidal polymer–montorillonite nanocomposites. Polym Int. 2012;61:99–110.

    Article  Google Scholar 

  37. Weng Y, Guo X, Gregory RL, Xie D. Preparation and evaluation of an antibacterial dental cement containing quaternary ammonium salts. J Appl Polym Sci. 2011;122:2542–51.

    Article  Google Scholar 

  38. Jono K, Takayama T, Kuno M, Higashide E. Effect of alky chain length of benzalkonium chloride on the bactericidal activity and binding to organic materials. Chem Pharm Bull. 1986;34:4215–24.

    Article  Google Scholar 

  39. Thorsteinsson T, Másson M, Kristinsson KG, Hjálmarsdóttir MA, Hilmarsson H, Loftsson T. Soft antimicrobial agents: synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds. J Med Chem. 2003;46:4173–81.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to greatly thank biomedical research technician Oona Hällfors for her help in biofilm inhibition testing. We also thank the support supplied by the National Science Foundation of Guangdong Province (8151064101000048, S2011020001452), China, and the Fundamental Research Funds for the Central Universities (2014ZM0006), China. Study belongs to activity of BioCity Turku Biomaterials Research Program (www.biomaterials.utu.fi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, X., Söderling, E., Liu, F. et al. Optimizing the concentration of quaternary ammonium dimethacrylate monomer in bis-GMA/TEGDMA dental resin system for antibacterial activity and mechanical properties. J Mater Sci: Mater Med 25, 1387–1393 (2014). https://doi.org/10.1007/s10856-014-5156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5156-x

Keywords

Navigation