Skip to main content

Advertisement

Log in

Dual setting α-tricalcium phosphate cements

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

An extension of the application of calcium phosphate cements (CPC) to load-bearing defects, e.g. in vertebroplasty, would require less brittle cements with an increased fracture toughness. Here we report the modification of CPC made of alpha-tricalcium phosphate (α-TCP) with 2-hydroxyethylmethacrylate (HEMA), which is polymerised during setting to obtain a mechanically stable polymer-ceramic composite with interpenetrating organic and inorganic networks. The cement liquid was modified by the addition of 30–70 % HEMA and ammoniumpersulfate/tetramethylethylendiamine as initiator. Modification of α-TCP cement paste with HEMA decreased the setting time from 14 min to 3–8 min depending on the initiator concentration. The 4-point bending strength was increased from 9 MPa to more than 14 MPa when using 50 % HEMA, while the bending modulus decreased from 18 GPa to approx. 4 GPa. The addition of ≥50 % HEMA reduced the brittle fracture behaviour of the cements and resulted in an increase of the work of fracture by more than an order of magnitude. X-ray diffraction analyses revealed that the degree of transformation of α-TCP to calcium deficient hydroxyapatite was lower for polymer modified cements (82 % for polymer free cement and 55 % for 70 % HEMA) after 24 h setting, while the polymerisation of HEMA in the cement liquid was quantitative according to FT-IR spectroscopy. This work demonstrated the feasibility of producing fracture resistant dual-setting calcium phosphate cements by adding water soluble polymerisable monomers to the liquid cement phase, which may be suitable for an application in load-bearing bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Breusch SJ, Kuhn KD. Bone cements based on polymethylmethacrylate. Orthopäde. 2003;32(1):41–50.

    Article  CAS  Google Scholar 

  2. Dorozhkin SV. Calcium orthophosphate cements for biomedical application. J Mater Sci. 2008;43(9):3028–57.

    Article  CAS  Google Scholar 

  3. Jaeblon T. Polymethylmethacrylate: properties and contemporary uses in orthopaedics. J Am Acad Orthop Surg. 2010;18(5):297–305.

    Google Scholar 

  4. Heini PF. Vertebroplastie: ein update. Orthopäde. 2010;39(7):658–64.

    Article  CAS  Google Scholar 

  5. Stanczyk M, van Rietbergen B. Thermal analysis of bone cement polymerisation at the cement-bone interface. J Biomech. 2004;37(12):1803–10.

    Article  CAS  Google Scholar 

  6. Bettencourt A, Calado A, Amaral J, Vale FM, Rico JMT, Monteiro J, Lopes A, Pereira L, Castro M. In vitro release studies of methylmethacrylate liberation from acrylic cement powder. Int J Pharm. 2000;197(1):161–8.

    Article  CAS  Google Scholar 

  7. Theiss F, Apelt D, Brand BA, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials. 2005;26(21):4383–94.

    Article  CAS  Google Scholar 

  8. Bohner M, Gbureck U, Barralet JE. Technological issues for the developement of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26(33):6423–9.

    Article  CAS  Google Scholar 

  9. Canal C, Ginebra MP. Fibre-reinforced calcium phosphate cements: a review. J Mech Behav Biomed. 2011;4(8):1658–71.

    Article  CAS  Google Scholar 

  10. Khairoun I, Driessens FCM, Boltong MG, Planell JA, Wenz R. Addition of cohesion promoters to calcium phosphate cements. Biomaterials. 1999;20(4):393–8.

    Article  CAS  Google Scholar 

  11. Alkhraisat MH, Rueda C, Marino FT, Torres J, Jerez LB, Gbureck U, Cabarcos EL. The effect of hyaluronic acid on brushite cement cohesion. Acta Biomaterialia. 2009;5(8):3150–6.

    Article  CAS  Google Scholar 

  12. Moreau JL, Weir MD, Xu HHK. Self-setting collagen-calcium phosphate bone cement: mechanical and cellular properties. J Biomed mater Res. 2009;91A(2):605–13.

    Article  CAS  Google Scholar 

  13. Schneiders W, Reinstorf A, Biewener A, Serra A, Grass R, Kinscher M, Heineck J, Rehberg S, Zwipp H, Rammelt S. In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia. J Orthop Res. 2009;27(1):15–21.

    Article  CAS  Google Scholar 

  14. Tamimi F, Kumarasami B, Doillon C, Gbureck U, Le Nihouannen D, Lopez Cabarcos E, Barralet JE. Brushite–collagen composites for bone regeneration. Acta Biomater. 2008;4(5):1315–21.

    Article  CAS  Google Scholar 

  15. dos Santos LA, Carrodeguas RG, Boschi AO, de Arruda ACF. Fiber-enriched double-setting calcium phosphate bone cement. J Biomed Mater Res A. 2003;65A(2):244–50.

    Article  Google Scholar 

  16. dos Santos LA, Carrodeguas RG, Boschi AO, de Arruda ACF. Dual-setting calcium phosphate cement modified with ammonium polyacrylate. Artif Organs. 2003;27(5):412–8.

    Article  Google Scholar 

  17. Wang J, Liu C, Liu Y, Zhang S. Double-network interpenetrating bone cement via in situ hybridization protocol. Adv Funct Mater. 2010;20(22):3997–4011.

    Article  CAS  Google Scholar 

  18. Filmon R, Grizon F, Baslé MF, Chappard D. Effects of negatively charged groups (carboxymethyl) on the calcification of poly(2-hydroxyethyl methacrylate). Biomaterials. 2002;23(14):3053–9.

    Article  CAS  Google Scholar 

  19. Song J, Malathong V, Bertozzi CR. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J Am Chem Soc. 2005;127(10):3366–72.

    Article  CAS  Google Scholar 

  20. ASTM-Standard C266-99: standard test method for time of setting of hydraulic cement paste by Gilmore needles. ASTM International 2002.

  21. Zainuddin, Hill DJT, Chirila TV, Whittaker AK, Kemp A. Experimental calcification of HEMA-based hydrogels in the presence of albumin and a comparison to the in vivo calcification. Biomacromolecules 2006;7(6):1758–65.

  22. White CJ, Tieppo A, Byrne ME. Controlled drug release from contact lenses: a comprehensive. J Drud Deliv Sci Tec. 2011;21(5):369–84.

    CAS  Google Scholar 

  23. Montheard JP, Chatzopoulos M, Chappard D. 2-Hydroxyethyl methacrylate (HEMA)—chemical properties and applications in biomesical fields. J Macromol Sci Rev Macromol Chem Phys. 1992;C32(1):1–34.

    Article  CAS  Google Scholar 

  24. Gkioni K, Leeuwenburgh SCG, Douglas TEL, Mikos AG, Jansen JA. Mineralisation of hydrogels for bone generation. Tissue Eng B. 2010;16(6):577–85.

    Article  CAS  Google Scholar 

  25. Ginebra MP, Fernandez E, Driessens FCM, Planell JA. Modeling the hydrolysis of α-tricalcium phosphate. J Am Ceram Soc. 1999;82(10):2808–12.

    Article  CAS  Google Scholar 

  26. Xu HHK, Quinn JB, Takagi S, Chow LC, Eichmiller FC. Strong and macroporous calcium phosphate cement: effects of porosity and fibre reinforcement. J Biomed Mater Res. 2001;57(3):457–66.

    Article  CAS  Google Scholar 

  27. Xu HHK, Eichmiller FC, Giuseppetti AA. Reinforcement of a self-setting calcium phosphate cement with different fibres. J Biomed Mater Res. 2000;52(1):107–14.

    Article  CAS  Google Scholar 

  28. Gorst NJS, Perrie Y, Gbureck U, Hutton AL, Hofmann MP, Grover LM, Barralet JE. Effects of fibre reinforcement on the mechanical properties of brushite cement. Acta Biomater. 2006;2(1):95–102.

    Article  CAS  Google Scholar 

  29. Barralet JE, Gaunt T, Wright AJ, Gibson IR, Knowles JC. Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement. J Biomed Mater Res (Appl Biomater). 2002;63(1):1–9.

    Article  CAS  Google Scholar 

  30. Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res. 1995;29(12):1537–43.

    Article  CAS  Google Scholar 

  31. Ginebra MP, Canal C, Espanol M, Pastorino D, Montufar EB. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev. 2012;64:1090–110.

    Article  CAS  Google Scholar 

  32. Siepmann J, Peppas NA. Mathematical modelling of controlled drug delivery. Adv Drug Deliv Rev. 2001;48(2–3):137–8.

    CAS  Google Scholar 

  33. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.

    Article  CAS  Google Scholar 

  34. Kumar A, Tyagi P, Singh H, Kumar Y, Lahiri SS. Synthesis and characterization of a porous poly(hydroxyethylmethacrylate-co-ethylene glycol dimethacrylate)-based hydrogel device for the implantable delivery of insulin. J Appl Polym Sci. 2012;126:894–905.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Gbureck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christel, T., Kuhlmann, M., Vorndran, E. et al. Dual setting α-tricalcium phosphate cements. J Mater Sci: Mater Med 24, 573–581 (2013). https://doi.org/10.1007/s10856-012-4828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4828-7

Keywords

Navigation