Skip to main content
Log in

Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol) monoacrylates (PEGMAs) with a molecular weight between 400 and 1,000 g mol−1 were grafted by ultraviolet initiated photopolymerization on the surface of polycarbonateurethane (PCU) for increasing its hydrophilicity and improving its hemocompatibility. The surface-grafted PCU films were characterized by Fourier transformation infrared spectroscopy, X-ray photoelectron spectroscopy, water contact angle, scanning electron microscopy (SEM) and atomic force microscopy measurements. The surface properties of the modified films were studied in dry and wetted state. Blood compatibility of the surfaces was evaluated by platelet adhesion tests and adhered platelets were determined by SEM. The results showed that the hydrophilicity of the films had been increased significantly by grafting PEGMAs, and platelets adhesion onto the film surface was obviously suppressed. Furthermore, the molecular weight of PEGMAs had a great effect on the hydrophilicity and hemocompatibility of the PCU films after surface modification and increased with increasing molecular weight of PEGMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Feng YK, Xue Y, Guo JT, Cheng L, Jiao LC, Zhang Y, et al. Synthesis and characterization of poly(carbonate urethane) networks with shape-memory properties. J Appl Polym Sci. 2009;112(1):473–8.

    Article  CAS  Google Scholar 

  2. Feng YK, Meng FR, Xiao RF, Zhao HY, Guo JT. Electrospinning of polycarbonate urethane biomaterials. Front Chem Sci Eng. 2011;5(1):11–8.

    Article  Google Scholar 

  3. Guo JT, Yin JW, Feng YK. Synthesis and characterization of HDI/MDI-polycarbonate urethane. Trans Tianjin Univ. 2010;16(5):317–21.

    Article  Google Scholar 

  4. Francois P, Vaudaux P, Nurdin N, Mathieu HJ, Descouts P, Lew DP. Physical and biological effects of a surface coating procedure on polyurethane catheters. Biomaterials. 1996;17(7):667–78.

    Article  CAS  Google Scholar 

  5. Ghanbari H, Viatge H, Kidane AG, Burriesci G, Tavakoli M, Seifalian AM. Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol. 2009;27(6):359–67.

    Article  CAS  Google Scholar 

  6. Guo JT, Ye YQ, Feng YK, Zhao HY. Studies on NO releasing from PCU grafted with endogenous NO donors. Polym Adv Technol. 2010;21(11):759–66.

    Article  CAS  Google Scholar 

  7. Behl M, Zotzmann J, Lendlein A. Shape-memory polymers and shape-changing polymers. Adv Polym Sci. 2010;226:1–40.

    Article  CAS  Google Scholar 

  8. Lendlein A, Behl M, Hiebl B, Wischke C. Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devic. 2010;7(3):357–79.

    Article  CAS  Google Scholar 

  9. Korossis SA, Fisher J, Ingham E. Cardiac valve replacement: a bioengineering approach. BioMed Mater Eng. 2000;10(2):83–124.

    CAS  Google Scholar 

  10. Ajili SH, Ebrahimi NG, Khorasani MT. Study on thermoplastic polyurethane/polypropylene (TPU/PP) blend as a blood bag material. J Appl Polym Sci. 2003;89(9):2496–501.

    Article  CAS  Google Scholar 

  11. Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J Vasc Surg. 2003;37(2):472–80.

    Article  Google Scholar 

  12. Chen KY, Kuo JF, Chen CY. Synthesis, characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes. Biomaterials. 2000;21(2):161–71.

    Article  Google Scholar 

  13. Gunatillake PA, Martin DJ, Meijs GF, McCarthy SJ, Adhikari R. Designing biostable polyurethane elastomers for biomedical implants. Aust J Chem. 2003;56(6):545–57.

    Article  CAS  Google Scholar 

  14. D’Arrigo P, Giordano C, Macchi P, Malpezzi L, Pedrocchi-Fantoni G, Servi S. Synthesis, platelet adhesion and cytotoxicity studies of new glycerophosphoryl-containing polyurethanes. Int J Artif Organs. 2007;30(2):133–43.

    Google Scholar 

  15. Lee JH, Lee HB, Andrade JD. Blood compatibility of polyethylene oxide surfaces. Prog Polym Sci. 1995;20(6):1043–79.

    Article  CAS  Google Scholar 

  16. Jo S, Park K. Surface modification using silanated poly(ethylene glycol)s. Biomaterials. 2000;21(6):605–16.

    Article  CAS  Google Scholar 

  17. Ko YG, Kim YH, Park KD, Lee HJ, Lee WK, Park HD, et al. Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation. Biomaterials. 2001;22(15):2115–23.

    Article  CAS  Google Scholar 

  18. Chen H, Hu XY, Zhang YX, Li D, Wu ZK, Zhang T. Effect of chain density and conformation on protein adsorption at PEG-grafted polyurethane surfaces. Colloid Surface B. 2008;61(2):237–43.

    Article  CAS  Google Scholar 

  19. Oh SJ, Jung JC, Zin WC. Synthesis and surface property variations of polypropylene-graft-poly(ethylene glycol). J Colloid Interface Sci. 2001;238(1):43–7.

    Article  CAS  Google Scholar 

  20. Kingshott P, Thissen H, Griesser HJ. Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials. 2002;23(9):2043–56.

    Article  CAS  Google Scholar 

  21. Thom VH, Altankov G, Groth T, Jankova K, Jonsson G, Ulbricht M. Optimizing cell-surface interactions by photografting of poly(ethylene glycol). Langmuir. 2000;16(6):2756–65.

    Article  CAS  Google Scholar 

  22. Tziampazis E, Kohn J, Moghe PV. PEG-variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration. Biomaterials. 2000;21(5):511–20.

    Article  CAS  Google Scholar 

  23. Efremova NV, Sheth SR, Leckband DE. Protein-induced changes in poly(ethylene glycol) brushes: molecular weight and temperature dependence. Langmuir. 2001;17(24):7628–36.

    Article  CAS  Google Scholar 

  24. Park HD, Bae JW, Park KD, Ooya T, Yui N, Jang JH, et al. Surface modification of polyurethane using sulfonated PEG grafted polyrotaxane for improved biocompatibility. Macromol Res. 2006;14(1):73–80.

    Article  CAS  Google Scholar 

  25. Pandiyaraj KN, Selvarajan V, Rhee YH, Kim HW, Shah SI. Glow discharge plasma-induced immobilization of heparin and insulin on polyethylene terephthalate film surfaces enhances anti-thrombogenic properties. Mater Sci Eng C. 2009;29(3):796–805.

    Article  CAS  Google Scholar 

  26. Han DK, Jeong SY, Kim YH. Evaluation of blood compatibility of PEO grafted and heparin immobilized polyurethanes. J Biomed Mater Res Appl Biomater. 1989;23(A2):211–28.

    CAS  Google Scholar 

  27. Choi WS, Bae JW, Lim HR, Joung YK, Park JC, Kwon IK, et al. RGD peptide-immobilized electrospun matrix of polyurethane for enhanced endothelial cell affinity. Biomed Mater. 2008;3(4). doi:10.1088/1748-6041/3/4/044104.

  28. Groth T, Lendlein A. Layer-by-layer deposition of polyelectrolytes––a versatile tool for the in vivo repair of blood vessels. Angew Chem Int Ed Engl. 2004;43(8):926–8.

    Article  CAS  Google Scholar 

  29. Vempaire D, Pelletier J, Lacoste A, Bechu S, Sirou J, Miraglia S, et al. Plasma-based ion implantation: a valuable technology for the elaboration of innovative materials and nanostructured thin films. Plasma Phys Control Fusion. 2005;47(5A):153–66.

    Article  Google Scholar 

  30. Fujimoto K, Takebayashi Y, Inoue H, Ikada Y. Ozone-induced graft polymerization onto polymer surface. J Polym Sci Part A Polym Chem. 1993;31(4):1035–43.

    Article  CAS  Google Scholar 

  31. Stachowiak TB, Svec F, Frechet JMJ. Patternable protein resistant surfaces for multifunctional microfluidic devices via surface hydrophilization of porous polymer monoliths using photografting. Chem Mater. 2006;18(25):5950–7.

    Article  CAS  Google Scholar 

  32. Sebra RP, Reddy SK, Masters KS, Bowman CN, Anseth KS. Controlled polymerization chemistry to graft architectures that influence cell–material interactions. Acta Biomater. 2007;3(2):151–61.

    Article  CAS  Google Scholar 

  33. Iguerb O, Bertrand P. Graft photopolymerization of polyethylene glycol monoacrylate (PEGA) on poly(methyl methacrylate) (PMMA) films to prevent BSA adsorption. Surf Interface Anal. 2008;40(3–4):386–90.

    Article  CAS  Google Scholar 

  34. Joung YK, Choi JH, Bae JW, Park KD. Hyper-branched poly(poly(ethylene glycol)methacrylate)-grafted surfaces by photo-polymerization with iniferter for bioactive interfaces. Acta Biomater. 2008;4(4):960–6.

    Article  CAS  Google Scholar 

  35. Jung IK, Bae JW, Choi WS, Choi JH, Park KD. Surface graft polymerization of poly(ethylene glycol) methacrylate onto polyurethane via thiol-ene reaction: preparation and characterizations. J Biomater Sci Polym E. 2009;20(10):1473–82.

    Article  CAS  Google Scholar 

  36. Bhattacharya A, Misra BN. Grafting: a versatile means to modify polymers––techniques, factors and applications. Prog Polym Sci. 2004;29(8):767–814.

    Article  CAS  Google Scholar 

  37. Feng YK, Zhao HY, Zhang L, Guo JT. Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility. Front Chem Sci Eng. 2010;4(3):372–81.

    Article  CAS  Google Scholar 

  38. Stachowiak TB, Mair DA, Holden TG, Lee LJ, Svec F, Frechet JMJ. Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. J Sep Sci. 2007;30(7):1088–93.

    Article  CAS  Google Scholar 

  39. Xu Z-K, Nie F-Q, Qu C, Wan L-S, Wu J, Yao K. Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes. Biomaterials. 2005;26(6):589–98.

    Article  CAS  Google Scholar 

  40. Lee JH, Jeong BJ, Lee HB. Plasma protein adsorption and platelet adhesion onto comb-like PEO gradient surfaces. J Biomed Mater Res. 1997;34(1):105–14.

    Article  CAS  Google Scholar 

  41. Gombotz WR, Guanghui W, Horbett TA, Hoffman AS. Protein adsorption to poly(ethylene oxide) surfaces. J Biomed Mater Res. 1991;25(12):1547–62.

    Article  CAS  Google Scholar 

  42. Zhao HY, Feng YK, Guo JT. Graft poly(ethylene glycol) Monoacrylate onto polycarbonateurethane surface by ultraviolet radiation grafting polymerization to control hydrophilicity. J Appl Polym Sci. 2011;119(6):3717–27.

    Article  CAS  Google Scholar 

  43. Reed AM, Askill IN, Weber WW, inventors; Polymedica Industries, Inc., assignee. Segmented polyether polyurethane. EP0348105A2; 1989.

  44. Higuchi A, Sugiyama K, Yoon BO, Sakurai M, Hara M, Sumita M, et al. Serum protein adsorption and platelet adhesion on pluronic(TM)-adsorbed polysulfone membranes. Biomaterials. 2003;24(19):3235–45.

    Article  CAS  Google Scholar 

  45. Sun TL, Tan H, Han D, Fu Q, Jiang L. No platelet can adhere––largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small. 2005;1(10):959–63.

    Article  CAS  Google Scholar 

  46. Ju H, McCloskey BD, Sagle AC, Kusuma VA, Freeman BD. Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. J Membr Sci. 2009;330:180–8.

    Article  CAS  Google Scholar 

  47. Jung F, Wischke C, Lendlein A. Degradable, multifunctional cardiovascular implants: challenges and hurdles. MRS Bull. 2010;35(8):607–13.

    Article  Google Scholar 

  48. Shastri V, Lendlein A. Materials in regenerative medicine. Adv Mater. 2009;21:3231–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Program of Introducing Talents of Discipline to Universities of China (No. B06006), the Science and Technology Project of Tianjin Municipal Science and Technology Commission, No. 08ZCKFSF03300, and by the International Cooperation from Ministry of Science and Technology of China (Grant No. 2008DFA51170) as well as by the Tianjin University-Helmholtz–Zentrum Geesthacht Joint Laboratory for Biomaterials and Regenerative Medicine, which is financed by MOST and the German Federal Ministry of Education and Research (BMBF) (Grant No. 0314596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakai Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Zhao, H., Behl, M. et al. Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility. J Mater Sci: Mater Med 24, 61–70 (2013). https://doi.org/10.1007/s10856-012-4685-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4685-4

Keywords

Navigation