Skip to main content
Log in

Development of chitosan-tripolyphosphate non-woven fibrous scaffolds for tissue engineering application

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The fibrous scaffolds are promising for tissue engineering applications because of their close structural resemblance with native extracellular matrix. Additionally, the chemical composition of scaffold is also an important consideration as they have significant influences on modulating cell attachment, morphology and function. In this study, chitosan-tripolyphosphate (TPP) non-woven fibrous scaffolds were prepared through wetspinning process. Interestingly, at physiological pH these scaffolds release phosphate ions, which have significant influences on cellular function. For the first time, cell viability in presence of varying concentration of sodium TPP solution was analyzed and correlated with the phosphate release from the scaffolds during 30 days incubation period. In vitro degradation of the chitosan-TPP scaffolds was higher than chitosan scaffolds, which may be due to decrease in crystallinity as a result of instantaneous ionic cross-linking during fiber formation. The scaffolds with highly interconnected porous structure present a remarkable cytocompatibility for cell growing, and show a great potential for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999;354:S32–4.

    Article  Google Scholar 

  2. Kim B-S, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998;16(5):224–30.

    Article  CAS  Google Scholar 

  3. Liu C, Xia Z, Czernuszka JT. Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des. 2007;85(7):1051–64.

    Article  CAS  Google Scholar 

  4. Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc interface. 2009;6:S311–24.

    Article  CAS  Google Scholar 

  5. Tuzlakoglu K, Reis RL. Biodegradable polymeric fiber structures in tissue engineering. Tissue Engineering Part B Rev. 2009;15(1):17–27.

    Article  CAS  Google Scholar 

  6. Mikos AG, Sarakinos G, Lyman MD, Ingber DE, Vacanti JP, Langer R. Prevascularization of porous biodegradable polymers. Biotechnol Bioeng. 1993;42(6):716–23. doi:10.1002/bit.260420606.

    Article  CAS  Google Scholar 

  7. Desai K, Kit K, Li J, Zivanovic S. Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules. 2008;9(3):1000–6. doi:10.1021/bm701017z.

    Article  CAS  Google Scholar 

  8. Ragetly GR, Griffon DJ, Lee H-B, Fredericks LP, Gordon-Evans W, Chung YS. Effect of chitosan scaffold microstructure on mesenchymal stem cell chondrogenesis. Acta Biomater. 2010;6(4):1430–6.

    Article  CAS  Google Scholar 

  9. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):19–34.

    Article  CAS  Google Scholar 

  10. Kawashima Y, Handa T, Kasai A, Takenaka H, Lin SY, Ando Y. Novel method for the preparation of controlled-release theophylline granules coated with a polyelectrolyte complex of sodium polyphosphate-chitosan. J Pharm Sci. 1985;74(3):264–8.

    Article  CAS  Google Scholar 

  11. Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym. 2009;76(2):167–82.

    Article  CAS  Google Scholar 

  12. Ong S-Y, Wu J, Moochhala SM, Tan M-H, Lu J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29(32):4323–32.

    Article  CAS  Google Scholar 

  13. Francis Suh JK, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21(24):2589–98.

    Article  CAS  Google Scholar 

  14. Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res. 2000;51(4):586–95.

    Article  CAS  Google Scholar 

  15. Malafaya P, Pedro A, Peterbauer A, Gabriel C, Redl H, Reis R. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci Mater Med. 2005;16(12):1077–85. doi:10.1007/s10856-005-4709-4.

    Article  CAS  Google Scholar 

  16. Tuzlakoglu K, Alves CM, Mano JF, Reis RL. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications. Macromol Biosci. 2004;4(8):811–9. doi:10.1002/mabi.200300100.

    Article  CAS  Google Scholar 

  17. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–90.

    Article  Google Scholar 

  18. Hirano S, Seino H, Akiyama Y. Chitin and chitosan: ecologically bioactive polymers. Biotechnology and Bioactive Polymers. New York: Plenum Press; 1994.

    Google Scholar 

  19. Anwer K, Rhee BG, Mendiratta SK. Recent progress in polymeric gene delivery systems. Crit Rev Ther Drug Carrier Syst. 2003;20(4):249–93.

    Article  CAS  Google Scholar 

  20. Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G, et al. Biological activity of chitosan: ultrastructural study. Biomaterials. 1988;9(3):247–52.

    Article  CAS  Google Scholar 

  21. Zhang H, Neau SH. In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylation. Biomaterials. 2001;22(12):1653–8.

    Article  CAS  Google Scholar 

  22. Vårum KM, Myhr MM, Hjerde RJN, Smidsrød O. In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res. 1997;299(1–2):99–101.

    Article  Google Scholar 

  23. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18(7):567–75.

    Article  CAS  Google Scholar 

  24. Mi F-L, Tan Y-C, Liang H-F, Sung H-W. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials. 2002;23(1):181–91.

    Article  CAS  Google Scholar 

  25. Ren D, Yi H, Wang W, Ma X. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr Res. 2005;340(15):2403–10.

    Article  CAS  Google Scholar 

  26. Freier T, Koh HS, Kazazian K, Shoichet MS. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26(29):5872–8.

    Article  CAS  Google Scholar 

  27. Agboh OC, Qin Y. Chitin and chitosan fibers. Polym Advan Technol. 1997;8(6):355–65. doi:10.1002/(sici)1099-1581(199706)8:6<355:aid-pat651>3.0.co;2-t.

    Article  CAS  Google Scholar 

  28. El-Tahlawy K, Hudson SM. Chitosan: aspects of fiber spinnability. J Appl Polym Sci. 2006;100(2):1162–8. doi:10.1002/app.23201.

    Article  CAS  Google Scholar 

  29. Goosen MFA. Applications of chitin and chitosan. Lancaster: Technomic Publishing; 1997.

    Google Scholar 

  30. Hirano S, Nagamura K, Zhang M, Kim SK, Chung BG, Yoshikawa M, et al. Chitosan staple fibers and their chemical modification with some aldehydes. Carbohydr Polym. 1999;38(4):293–8.

    Article  CAS  Google Scholar 

  31. Knaul JZ, Hudson SM, Creber KAM. Improved mechanical properties of chitosan fibers. J Appl Polym Sci. 1999;72(13):1721–32.

    Article  CAS  Google Scholar 

  32. Wei YC, Hudson SM, Mayer JM, Kaplan DL. The crosslinking of chitosan fibers. J Polym Sci A Polym Chem. 1992;30(10):2187–93. doi:10.1002/pola.1992.080301013.

    Article  CAS  Google Scholar 

  33. Yang Q, Dou F, Liang B, Shen Q. Studies of cross-linking reaction on chitosan fiber with glyoxal. Carbohydr Polym. 2005;59(2):205–10.

    Article  Google Scholar 

  34. Martell AE, Smith RM. NIST Critically Selected Stability Constants of Metal Complexes Database. Gaithersburg: U.S. Dept. of Commerce; 2004.

    Google Scholar 

  35. Wang Q, Zhang N, Hu X, Yang J, Du Y. Chitosan/starch fibers and their properties for drug controlled release. Eur J Pharm Biopharm. 2007;66(3):398–404.

    Article  CAS  Google Scholar 

  36. Yeh C-H, Lin P-W, Lin Y-C. Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures. Microfluid Nanofluid. 2010;8(1):115–21. doi:10.1007/s10404-009-0485-7.

    Article  CAS  Google Scholar 

  37. Pati F, Adhikari B, Dhara S. Development of ultrafine chitosan fibers through modified wetspinning technique. J Appl Polym Sci. 2011;121(3):1550–7.

    Article  CAS  Google Scholar 

  38. Pati F, Adhikari B, Dhara S. Development of chitosan–tripolyphosphate fibers through pH dependent ionotropic gelation. Carbohydr Res. 2011;346(16):2582–8. doi:10.1016/j.carres.2011.08.028.

    Article  CAS  Google Scholar 

  39. Hubbell JA. Synthetic biodegradable polymers for tissue engineering and drug delivery. Curr Opinion Solid State Mater Sci. 1998;3(3):246–51.

    Article  CAS  Google Scholar 

  40. Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, et al. Fabrication and surface modification of macroporous poly(l-lactic acid) and poly(l-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res. 2002;62(3):438–46.

    Article  CAS  Google Scholar 

  41. Brouwer J, van Leeuwen-Herberts T, Ruit MO-v. Determination of lysozyme in serum, urine, cerebrospinal fluid and feces by enzyme immunoassay. Clin Chim Acta. 1984;142(1):21–30.

    Article  CAS  Google Scholar 

  42. Masuda T, Ueno Y, Kitabatake N. Sweetness and enzymatic activity of lysozyme. J Agric Food Chem. 2001;49(10):4937–41. doi:10.1021/jf010404q.

    Article  CAS  Google Scholar 

  43. Marczenko Z, Balcerzak M. Separation, preconcentration, and spectrophotometry in inorganic analysis. Amsterdam: Elsevier; 2000.

    Google Scholar 

  44. Riley PA. The effect on cell proliferation of reduced substrate adhesiveness. Cell Differ. 1974;3(4):233–8.

    Article  CAS  Google Scholar 

  45. Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials. 1993;14(5):359–64.

    Article  CAS  Google Scholar 

  46. Anestål K, Arnér ES. Rapid induction of cell death by selenium-compromised thioredoxin reductase 1 but not by the fully active enzyme containing selenocysteine. J Biol Chem. 2003;278(18):15966–72.

    Article  Google Scholar 

  47. Kim Y-J, Sah RLY, Doong J-YH, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem. 1988;174(1):168–76.

    Article  CAS  Google Scholar 

  48. Schauer CL, Chen M-S, Chatterley M, Eisemann K, Welsh ER, Price RR, et al. Color changes in chitosan and poly(allyl amine) films upon metal binding. Thin Solid Films. 2003;434(1–2):250–7.

    Article  CAS  Google Scholar 

  49. Zhang X, Hua H, Shen X, Yang Q. In vitro degradation and biocompatibility of poly(l-lactic acid)/chitosan fiber composites. Polymer. 2007;48(4):1005–11.

    Article  CAS  Google Scholar 

  50. Cheung HS, Tofe AJ. Mechanism of cell growth on calcium phosphate particles: role of cell-mediated dissolution of calcium phosphate matrix. STP Pharm Sci. 1993;3(1):51–5.

    CAS  Google Scholar 

  51. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge DBT and DST, Government of India for financial support and IIT Kharagpur for providing infrastructural facility. Finally, all lab members of Tissue Engineering laboratory at SMST, IIT Kharagpur are acknowledged for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Dhara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pati, F., Adhikari, B. & Dhara, S. Development of chitosan-tripolyphosphate non-woven fibrous scaffolds for tissue engineering application. J Mater Sci: Mater Med 23, 1085–1096 (2012). https://doi.org/10.1007/s10856-012-4559-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4559-9

Keywords

Navigation