Skip to main content
Log in

In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines)

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Poly(2-oxazolines) with varying alkyl chain lengths (e.g., methyl, ethyl, aryl) and molar masses have been tested for cell cytotoxicity in vitro. A standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used for the estimation of cell viability. Two monomers, 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline, were found to provide polymers with non-cytotoxic properties. The dependence of cell viability on molar mass confirmed the expected trend; the viability increased with the higher molar mass of poly(2-ethyl-2-oxazoline) (PETOX), up to 15,000 g/mol. The results obtained for the polymers with aliphatic side chains were compared with the analogues that possessed an aromatic moiety. All results confirmed low cytotoxicity of the polymers prepared by cationic polymerization of 2-alkyl- and 2-aryl-2-oxazolines, which supports their utilization in biomedical applications. Fluorescence microscopy and steady-state fluorescence were used to observe pyrene-labeled polymer interactions with living cells. Polymer accumulated within the cells was found to be dependent on polymer concentration in media. The immunoefficiency of aromatic and aliphatic oxazoline polymers and copolymers was also studied. Phagocytic and metabolic activities of macrophages were used to assess the immunosuppressive effects of the selected copolymers for possible applications in drug delivery and immunobiology. Overall, the tested polymers demonstrated no significant influences on the cellular immunological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release. 2008;127:189–207.

    Article  CAS  Google Scholar 

  2. Roy I, Gupta MN. Smart polymeric materials: emerging biochemical applications. Chem Biol. 2003;10:1161–71.

    Article  CAS  Google Scholar 

  3. Jeong B, Gutowska A. Lessons from nature: stimuli responsive polymers and their biomedical applications. Trends Biotechnol. 2002;20:305–11.

    Article  CAS  Google Scholar 

  4. Shalaby SW. Biomedical polymers: designed-to-degrade systems. Cincinnati: Hansen/Gardner Publishers; 1994.

    Google Scholar 

  5. Stuart LM, Ezekowitz RAB. Phagocytosis: elegant complexity. Immunity. 2005;22:539–50.

    Article  CAS  Google Scholar 

  6. Gordon S. The macrophage-past, present and future. Eur J Immunol. 2007;37:S9–17.

    Article  CAS  Google Scholar 

  7. Paulnock DM. Macrophages. New York: Oxford University Press Inc.; 2000. p. 1–209.

    Google Scholar 

  8. Adams N, Schubert US. Poly(2-oxazolines) in biological and biomedical application context. Adv Drug Deliv Rev. 2007;59:1504–20.

    Article  CAS  Google Scholar 

  9. Kobayashi S. Ethylenimine polymers. Prog Polym Sci. 1990;15:751–823.

    Article  CAS  Google Scholar 

  10. Litt MH, Hsieh BR, Krieger IM, Chen TT, Lu HL. Low surface energy polymers and surface-active block polymers: II. Rigid microporous foams by emulsion polymerisation. J Colloid Interface Sci. 1987;115:312–29.

    Article  CAS  Google Scholar 

  11. Weberskirch R, Hettich R, Nuyken O, Schmaljohann D, Voit B. Synthesis of new amphiphilic star polymers derived from a hyperbranched macroinitiator by the cationic ‘grafting from’ method. Macromol Chem Phys. 1999;200:863–73.

    Article  CAS  Google Scholar 

  12. Jin RH. Controlled location of porphyrin in aqueous micelles self-assembled from porphyrin centered amphiphilic star poly (oxazolines). Adv Mater. 2002;14:889–92.

    Article  CAS  Google Scholar 

  13. Puts RD, Sogah DY. Universal multifunctional initiator containing orthogonal reactive sites. Synthesis of macromonomers and comb polymers using consecutive controlled free radical and cationic ring-opening polymerizations. Macromolecules. 1997;30:7050–5.

    Article  CAS  Google Scholar 

  14. Christova D, Velichkova R, Loos W, Goethals EJ, Du Prez F. New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer. 2003;44:2255–61.

    Article  CAS  Google Scholar 

  15. Park JS, Akiyama Y, Winnik FM, Kataoka K. Versatile synthesis of end-functionalized thermosensitive poly(2-isopropyl-2-oxazolines). Macromoleules. 2004;37:6786–92.

    Article  CAS  Google Scholar 

  16. Luxenhofer R, Schulz A, Roques C, Li S, Bronich TK, Batrakova EV, Jordan R, Kabanov AV. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31:4972–9.

    Article  CAS  Google Scholar 

  17. Mero A, Pasut G, Dalla Via L, Fijten MWM, Schubert US, Hoogenboom R, Veronese FM. Synthesis and characterization of poly(2-ethyl-2-oxazoline)-conjugates with proteins and drugs: suitable alternatives to PEG-conjugates? J Control Release. 2008;125:87–95.

    Article  CAS  Google Scholar 

  18. Korcova J, Farkas P, Kronek J, Bystricky S. Preparation of synthetic polyoxazoline based carrier and Vibrio cholerae O-specific polysaccharide conjugate (vaccine). Eur J Med Chem. 2010;45:795–9.

    Article  Google Scholar 

  19. Korcova J, Machova E, Farkas P, Bystricky S. Immunomodulative properties of conjugates composed of detoxified lipopolysaccharide and capsular polysaccharide of Vibrio cholerae O135 bound to BSA-protein carrier. Biologia. 2010;65:768–75.

    Article  CAS  Google Scholar 

  20. Jeong JH, Song SH, Lim DW, Lee H, Park TG. DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J Control Release. 2001;73:391–9.

    Article  CAS  Google Scholar 

  21. Lee SC, Kim C, Kwon IC, Chung H, Jeong SY. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(-caprolactone) copolymer as a carrier for paclitaxel. J Control Release. 2003;89:437–46.

    Article  CAS  Google Scholar 

  22. Kempe K, Vollrath A, Schaefer HW, Poehlmann TG, Biskup C, Hoogenboom R, Hornig S, Schubert US. Multifunctional poly(2-oxazoline) nanoparticles for biological applications. Macromol Rapid Commun. 2010;31:1869–73.

    Article  CAS  Google Scholar 

  23. Gaentner FC, Luxenhofer R, Blechert B, Jordan R, Essler M. Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s. J Control Release. 2007;119:291–300.

    Article  Google Scholar 

  24. Goddard P, Hutchinson LE, Brown J, Brookman LJ. Soluble polymeric carriers for drug delivery. Part 2. Preparation and in vivo behavior of N-acylethyleneimine copolymer. J Control Release. 1989;10:5–16.

    Article  CAS  Google Scholar 

  25. Aoi K, Okada M. Polymerization of oxazolines. Prog Polym Sci. 1996;21:151–208.

    Article  CAS  Google Scholar 

  26. Kronek J, Luston J, Kronekova Z, Paulovicova E, Farkas P, Petrencikova N, Paulovicova L, Janigova I. Synthesis and bioimmunological efficiency of poly(2-oxazolines) containing a free amino group. J Mater Sci Mater Med. 2010;21:879–86.

    Article  CAS  Google Scholar 

  27. Shiori T, Hamada Y, Kato S, Shibata M, Kondo Y, Nakagawa H, Kohda K. Cytotoxic activity of cyclic peptides of marine origin and their derivatives: importance of oxazoline functions. Biochem Pharm. 1987;36:4181–5.

    Article  Google Scholar 

  28. Ross D. Metabolic basis of benzene toxicity. Eur J Haematol. 1996;57:111–8.

    Article  Google Scholar 

  29. Klopman G, Shi LM, Ramu A. Quantitative structure–activity relationship of multidrug resistance reversal agents. Mol Pharm. 1997;52:323–34.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support of the Slovak Agency for the Research and Development in this Project number APVV-003206 and the Slovak Scientifical Agency VEGA in the Project nr. 2/0157/09. This work was supported in Slovak-Polish bilateral project (acronym NANOMED) nr. APVV-SK-PL-0029-09 by the Slovak Agency for the Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Kronek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronek, J., Kroneková, Z., Lustoň, J. et al. In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines). J Mater Sci: Mater Med 22, 1725–1734 (2011). https://doi.org/10.1007/s10856-011-4346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4346-z

Keywords

Navigation