Skip to main content
Log in

Glycyrrhetinic acid-functionalized degradable micelles as liver-targeted drug carrier

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Recently, many efforts have been devoted to investigating the application of functionalized micelles as targeted drug delivery carriers. In this study, glycyrrhetinic acid (GA, a liver targeting ligand) modified poly(ethylene glycol)-b-poly(γ-benzyl l-glutamate) micelles were prepared and evaluated as a potential liver-targeted drug carrier. The aggregation behavior, stability, size and morphology of the micelles were investigated. Anticancer drug doxorubicin (DOX) was encapsulated in the micelles. The drug release profile, in vivo distribution and the cytotoxicity against hepatic carcinoma QGY-7703 cells of DOX-loaded micelles were studied. The results indicated that the release profile was pH-dependent with Fickian diffusion kinetics. The micelles were remarkably targeted to the liver, inducing a 4.9-fold higher DOX concentration than that for free DOX·HCl. The DOX-loaded micelles exhibited almost twofold more potent cytotoxicity compared with DOX·HCl, and the cytotoxicity was time- and dosage-dependent. These results suggest that GA-functionalized micelles represent a promising carrier for drug delivery to the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp. 1975;51:135–53.

    Article  CAS  Google Scholar 

  2. Soussan E, Cassel S, Blanzat M, et al. Drug delivery by soft matter: matrix and vesicular carriers. Angew Chem Int Ed. 2009;48:274–88.

    Article  CAS  Google Scholar 

  3. Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32:962–90.

    Article  CAS  Google Scholar 

  4. Meng FH, Zhong ZY, Jan FJ. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules. 2009;10:197–209.

    Article  CAS  Google Scholar 

  5. Nie Y, Zhang ZR, Li L, et al. Synthesis, characterization and transfection of a novel folate-targeted multipolymeric nanoparticles for gene delivery. J Mater Sci Mater Med. 2009;20:1849–57.

    Article  CAS  Google Scholar 

  6. Chen ZN, Mi L, Xu J, et al. Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (I-131) metuximab injection: clinical phase I/II trials. Int J Radiat Oncol. 2006;65:435–44.

    Article  CAS  Google Scholar 

  7. Petrak K. Essential properties of drug-targeting delivery systems. Drug Discov Today. 2005;10:1667–73.

    Article  CAS  Google Scholar 

  8. Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54:169–90.

    Article  CAS  Google Scholar 

  9. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces. 1999;16:3–27.

    Article  CAS  Google Scholar 

  10. Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev. 2002;54:203–22.

    Article  CAS  Google Scholar 

  11. Harada A, Kataoka K. Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications. Prog Polym Sci. 2006;31:949–82.

    Article  CAS  Google Scholar 

  12. Haag R. Supermolecular drug-delivery systems based on polymeric core-shell architectures. Angew Chem Int Ed. 2004;43:278–82.

    Article  CAS  Google Scholar 

  13. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2:750–63.

    Article  CAS  Google Scholar 

  14. Sutton D, Nasongkla N, Blanco E, et al. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24:1029–46.

    Article  CAS  Google Scholar 

  15. Morell AG, Irvine RA, Sternlieb I, Scheinberg IH. Physical and chemical studies on ceruloplasmin. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J Biol Chem. 1968;243:155–9.

    CAS  Google Scholar 

  16. Liang HF, Chen CT, Chen SC, et al. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 2006;27:2051–9.

    Article  CAS  Google Scholar 

  17. Zhang J, Zhang QS, Chen XM, et al. Synthesis of a targeting drug for antifibrosis of liver; a conjugate for delivering glycyrrhetin to hepatic stellate cells. Glycoconj J. 2003;19:423–9.

    Article  CAS  Google Scholar 

  18. Zhang YL, Wu Y, Yang WL, et al. Preparation, characterization, and drug release in vitro of chitosan-glycyrrhetic acid nanoparticles. J Pharm Sci. 2006;95:181–91.

    Article  Google Scholar 

  19. Negishi M, Irie A, Nagata N, et al. Specific binding of glycyrrhetinic acid to the rat liver membrane. Biochim Biophys Acta. 1991;1066:77–82.

    Article  CAS  Google Scholar 

  20. Ismair MG, Stanca C, Ha HR, et al. Interactions of glycyrrhizin with organic anion transporting polypeptides of rat and human liver. Hepatol Res. 2003;26:343–7.

    Article  CAS  Google Scholar 

  21. Zha RT, He XT, Du T, et al. Synthesis and Characterization of chitosan nanoparticles modified by glycyrrhetinic acid as a liver targeting drug carrier. Chem J Chin U. 2007;28:1098–100.

    CAS  Google Scholar 

  22. Tsuji H, Osaka S, Kiwada H. Targeting of liposomes surface-modified with glycyrrhizin to the liver. I. Preparation and biological disposition. Chem Pharm Bull. 1991;39:1004–8.

    CAS  Google Scholar 

  23. Tian Q, Wang XH, Wang W, et al. Insight into glycyrrhetinic acid: the role of the hydroxyl group on liver targeting. Int J Pharm. 2010;400:153–7.

    Article  CAS  Google Scholar 

  24. Tian Q, Zhang CN, Wang XH, et al. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials. 2010;31:4748–56.

    Article  CAS  Google Scholar 

  25. Lin AH, Liu YM, Huang Y, et al. Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. Int J Pharm. 2008;359:247–53.

    Article  CAS  Google Scholar 

  26. Mao SJ, Bi YQ, Jin H, et al. Preparation, characterization and uptake by primary cultured rat hepatocytes of liposomes surface-modified with glycyrrhetinic acid. Pharmazie. 2007;62:614–9.

    CAS  Google Scholar 

  27. Cha RT, Du T, Li JH, et al. Synthesis and characterization of polypeptide containing liver-targeting group. Polym Int. 2006;55:1057–62.

    Article  CAS  Google Scholar 

  28. Daly WH, Phche D. The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl) carbonate. Tetrahedron Lett. 1998;29:5859–62.

    Article  Google Scholar 

  29. Van-Steenis JH, van Maarseveen EM, Verbaan FJ, et al. Preparation and characterization of folate-targeted pEG-coated pDMAEMA-based polymers. J Control Release. 2003;87:167–76.

    Article  CAS  Google Scholar 

  30. Barbosa MEM, Montembault V, Cammas-Marion S, et al. Synthesis and characterization of novel poly(γ-benzyl-l-glutamate) derivatives tailored for the preparation of nanoparticles of pharmaceutical interest. Polym Int. 2007;56:317–24.

    Article  CAS  Google Scholar 

  31. Vey E, Roger C, Meehan L, et al. Degradation mechanism of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polym Degrad Stab. 2008;93:1869–76.

    Article  CAS  Google Scholar 

  32. Jeong YI, Nah JW, Lee HC, et al. Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Int J Pharm. 1999;188:49–58.

    Article  CAS  Google Scholar 

  33. Huang CK, Lo CL, Chen HH, et al. Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Adv Funct Mater. 2007;17:2291–7.

    Article  CAS  Google Scholar 

  34. Peppas NA. A model of dissolution-controlled solute release from porous drug delivery polymeric systems. J Biomed Mater Res. 1983;17:1079–87.

    Article  CAS  Google Scholar 

  35. Kim D, Gao ZG, Lee ES, et al. In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol Pharm. 2009;6:1353–62.

    Article  CAS  Google Scholar 

  36. Segura-Sánchez F, Montembault V, Fontaine L, et al. Synthesis and characterization of functionalized poly(γ-benzyl-l-glutamate) derivates and corresponding nanoparticles preparation and characterization. Int J Pharm. 2010;387:244–52.

    Article  Google Scholar 

  37. Martinez-Barbosa ME, Cammas-Marion S, Bouteiller L, et al. PEGylated degradable composite nanoparticles based on mixtures of PEG-b-Poly(γ-benzyl l-glutamate) and poly(γ-benzyl l-glutamate). Bioconjug Chem. 2009;20:1490–6.

    Article  CAS  Google Scholar 

  38. Jeong YI, Na HS, Cho KO, et al. Antitumor activity of adriamycin-incorporated polymeric micelles of poly(γ-benzyl l-glutamate)/poly(ethylene oxide). Int J Pharm. 2009;365:150–6.

    Article  CAS  Google Scholar 

  39. He Q, Yuan WM, Liu J, et al. Study on in vivo distribution of liver-targeting nanoparticles encapsulating thymidine kinase gene (TK gene) in mice. J Mater Sci Mater Med. 2008;19:559–65.

    Article  CAS  Google Scholar 

  40. Wu DQ, Lu B, Chang C, et al. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials. 2009;30:1363–71.

    Article  CAS  Google Scholar 

  41. Stockert RJ, Morell AG. Hepatic binding protein: the galactose-sepcific receptor of mammalian hepatocytes. Hepatology. 1983;3:750–7.

    Article  CAS  Google Scholar 

  42. Upadhyay KK, Bhatt AN, Mishra AK, et al. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials. 2010;31:2882–92.

    Article  CAS  Google Scholar 

  43. Zweers MLT, Engbers GHM, Grijpma DW, et al. In vitro degradation of nanoparticles prepared from polymers based on dl-lactide, glycolide and poly(ethylene oxide). J Control Release. 2004;100:347–56.

    Article  CAS  Google Scholar 

  44. Kataoka K, Matsumoto T, Yokoyama M, et al. Doxorubicin-loaded poly(ethylene glycol)-poly (β-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release. 2000;64:143–53.

    Article  CAS  Google Scholar 

  45. Li YY, Zhang XZ, Cheng H, et al. Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery. Biomacromolecules. 2006;7:2956–60.

    Article  CAS  Google Scholar 

  46. Shuai XT, Ai H, Nasongkla N, et al. Micellar carriers based on block copolymers of poly(ε- caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release. 2004;98:415–26.

    Article  CAS  Google Scholar 

  47. Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364:328–43.

    Article  CAS  Google Scholar 

  48. Shiah JG, Dvořák M, Kopečková P, et al. Biodistribution and antitumour efficacy of long- circulating N-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin conjugates in nude mice. Eur J Cancer. 2001;37:131–9.

    Article  CAS  Google Scholar 

  49. Zunino F, Marco AD, Zaccara A, Gambetta RA. The interaction of daunorubicin and doxorubicin with DNA and chromatin. Biochim Biophys Acta. 1980;607:206–14.

    CAS  Google Scholar 

  50. Itsubo M, Ishikawa T, Toda G, et al. Immunohistochemical study of expression and cellular localization of the multidrug resistance gene product P-glycoprotein in primary liver carcinoma. Cancer. 1994;72:298–303.

    Article  Google Scholar 

  51. Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release. 2004;96:273–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 50873048, No.51073080) and Key Project of Scientific and Technical Supporting Programs of Tianjin (No. 10ZCKFSY07500) for the financial support. The authors also appreciate Prof. Hua Tang and Mr. Min Liu for their assistance in the cytotoxicity assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Wang, W., Wang, P. et al. Glycyrrhetinic acid-functionalized degradable micelles as liver-targeted drug carrier. J Mater Sci: Mater Med 22, 853–863 (2011). https://doi.org/10.1007/s10856-011-4262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4262-2

Keywords

Navigation