Skip to main content
Log in

Bacterial adhesion onto materials with specific surface chemistries under flow conditions

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Staphylococcus epidermidis adhesion onto materials with specific chemical functionalities, under flow, was investigated by using surfaces prepared by self-assembly of alkyl silane monolayers on glass. Terminal methyl (CH3) and amino (NH2) groups were formed by chemical vapor deposition of silanes, at elevated temperature. Carboxyl (COOH) terminated groups were prepared by further modification of NH2 groups with succide anhydride and positively charged NH2 groups by adsorption of poly-l-lysine hydrobromide. Hydroxyl (OH) terminated glass was used as control. Surface modification was verified by contact angle measurements, atomic force microscopy and X-ray photoelectron spectroscopy. A parallel plate flow chamber was used to evaluate bacterial adhesion at various shear rates. Adhesion was found to be depended on the monolayer’s terminal functionality. It was higher on the CH3 followed by the positively charged NH2, the non-charged NH2 groups, the COOH and minimal on the OH-terminated glass. The increase in the material surface free energy significantly reduced the adhesion of a hydrophilic bacterial strain, and this is in accordance with the predictions of the thermodynamic theory. However, the increase in the shear rate restricted the predictability of the theory and revealed macromolecular interactions between bacteria and NH2- and COOH-terminated surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis. 2002;2:677–85.

    Article  Google Scholar 

  2. Vincent J-L. Nosocomial infections in adult intensive-care units. Lancet. 2003;361:2068–77.

    Article  PubMed  Google Scholar 

  3. Vuong C, Otto M. Staphylococcus epidermidis infections. Microb Infect. 2002;4:481–9.

    Article  Google Scholar 

  4. Morra M, Cassinelli C. Bacterial adhesion to polymer surfaces: A critical review of surface thermodynamic approaches. J Biomater Sci Polym Edn. 1997;9:55–74.

    Article  CAS  Google Scholar 

  5. Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Gotz F. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 1996;20:1083–91.

    Article  CAS  PubMed  Google Scholar 

  6. Balazs DJ, Triandafillu K, Chevolot Y, Aronsson B–O, Harms H, Descouts P, et al. Surface modification of PVC endotracheal tubes by oxygen glow discharge to reduce bacterial adhesion. Surf Interface Anal. 2003;35:301–9.

    Article  CAS  Google Scholar 

  7. Katsikogianni M, Spiliopoulou I, Dowling DP, Missirlis YF. Adhesion of slime producing Staphylococcus epidermidis strains to PVC and diamond-like carbon/silver/fluorinated coatings. J Mater Sci Mater Med. 2006;17:679–89.

    Article  CAS  PubMed  Google Scholar 

  8. Katsikogianni M, Amanatides E, Mataras DS, Missirlis YF. Staphylococcus epidermidis Adhesion to He, He/O2 Plasma Treated PET Films and Aged Materials: Contributions of Surface Free Energy and Shear Rate. Colloids Surf B Biointerface. 2008;65(2):257–68.

    Article  CAS  Google Scholar 

  9. Dulcey CS, Georger JH, Krauthamer V Jr, Stenger DA, Fare TL, Calvert JM. Deep UV photochemistry of chemisorbed monolayers: Patterned coplanar molecular assemblies. Science. 1991;252:551–4.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Margel S, Vogler EA, Firment L, Watt T, Haynie S, Sogah DY. Peptide, protein and cellular interactions with self-assembled monolayer model surfaces. J Biomed Mater Res. 1993;27:1463–76.

    Article  CAS  PubMed  Google Scholar 

  11. Scheuerman TR, Camper AK, Hamilton MA. Effects of substratum topography on bacterial adhesion. J Coloids Interface Sci. 1998;208:23–33.

    Article  CAS  Google Scholar 

  12. Goldsmith HL, Turitto VT. Reological aspects of thrombosis and haemostasis: Basic principles and applications. Thromb Haemostas. 1986;55:415–35.

    CAS  Google Scholar 

  13. Sugimura H, Hozumi A, Kameyama T, Takai O. Organosilane self-assembled monolayers formed at the vapour/solid interface. Surf Interface Anal. 2002;34:550–4.

    Article  CAS  Google Scholar 

  14. An Y, Chen M, Xue Q, Liu W. Preparation of self-assembly of carboxylic acid-functionalized silica. J Colloid Interface Sci. 2007;311:507–13.

    Article  CAS  PubMed  Google Scholar 

  15. Vadillo-Rodriguez V, Bussher HJ, Norde W, De Vries J, Dijkstra RJB, Stokroos I, et al. Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods. Appl Environ Microbiol. 2004;70:5441–6.

    Article  CAS  PubMed  Google Scholar 

  16. Busscher HJ, Weerkamp AH, van der Mei HC, van Pelt AWJ, De Jong HP, Arends J. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol. 1984;48:980–3.

    CAS  PubMed  Google Scholar 

  17. van Oss CJ, Good RJ, Chaudhury MK. The role of van der Waals foces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces. J Colloid Interface Sci. 1986;111:378–90.

    Article  Google Scholar 

  18. Stavridi M, Katsikogianni M, Missirlis YF. The influence of surface patterning and/or sterilization on the haemocompatibility of polycaprolactones. Mater Sci Eng C. 2003;23:359–65.

    Article  Google Scholar 

  19. An YH, Friedman RJ. Laboratory methods for studies of bacterial adhesion. J Microbiol Methods. 1997;30:141–52.

    Article  CAS  Google Scholar 

  20. Kamusewitz H, Possart W. Wetting and scanning force microscopy on rough polymer surfaces: Wenzel’s roughness factor and the thermodynamic contact angle. Appl Phys A. 2003;76:899–902.

    Article  CAS  ADS  Google Scholar 

  21. Mendez-Vilas A, Gallardo-Moreno AM, Calzado-Montero R, Gonzalez-Martın ML. AFM probing in aqueous environment of Staphylococcus epidermidis cells naturally immobilised on glass: Physico-chemistry behind the successful immobilisation. Colloids Surf B Biointerface. 2008;63:101–9.

    Article  CAS  Google Scholar 

  22. Bakker DP, Postmus BR, Busscher HJ, van der Mei HC. Bacterial strains isolated from different niches can exhibit different patterns of adhesion to substrata. Appl Environ Microbiol. 2004;70:3758–60.

    Article  CAS  PubMed  Google Scholar 

  23. Finlay JA, Callow ME, Ista LK, Lopez GP, Callow JA. The influence of surface wettability on the adhesion strength of settled spores of the green alga Enteromorpha and the diatom Amphora. Integr Comp Biol. 2002;42:1116–22.

    Article  Google Scholar 

  24. Bayoudh S, Ponsonnet L, Ben Ouada H, Bakhrouf A. Othmane A Bacterial detachment from hydrophilic and hydrophobic surfaces using a microjet impingement. Coll Surf A Physicochem Eng Aspect. 2005;266:160–7.

    Article  CAS  Google Scholar 

  25. Boks NP, Norde W, van der Mei HC, Busscher HJ. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiol. 2008;154:3122–33.

    Article  CAS  Google Scholar 

  26. Katsikogianni MG, Missirlis YF. Interactions of bacteria with specific biomaterial surface chemistries under flow conditions. Acta Biomater. in press.

  27. Ma H, Dickinson RB. Kinetic analysis of the attachment of a biological particle to a surface by macromolecular binding. J Theor Biol. 2004;226:237–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor I. Spiliopoulou from the Department of Microbiology, School of Medicine, University of Patras, for providing the bacteria and Dr. E. Siokou from the FORTH/ICE-HT, Patras, for the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Missirlis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsikogianni, M.G., Missirlis, Y.F. Bacterial adhesion onto materials with specific surface chemistries under flow conditions. J Mater Sci: Mater Med 21, 963–968 (2010). https://doi.org/10.1007/s10856-009-3975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3975-y

Keywords

Navigation