Skip to main content
Log in

Micellar carrier based on methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) block copolymers bearing ketone groups on the polyester block for doxorubicin delivery

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Block copolymers of Methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) bearing ketone groups (MPEG-b-P(CL-co-OPD)) are synthesized and evaluated for its potential to form micelles containing doxorubicin (DOX), a representative anticancer drug, by using an in vitro method based on membrane dialysis to emulate drug release in vivo. The 1H NMR spectra of the prepared block copolymers in D2O solution exhibit peaks due to the P(OPD-co-CL) in decreased intensity, indicates that the polymers form micelle particles containing the hydrophilic segments in their external parts. The CMC of the copolymer decrease with an increase in the content of ketone groups in the hydrophobic chain. Drug-free and drug-loaded solutions of structurally related copolymers indicate the polymeric aggregation into micellar-type constructs. The size of the drug-loaded micelles is found to be larger than corresponding drug-free micelles. The release rate of MPEG-b-PCL micelles is faster than MPEG-b-P(OPD-co-CL) micelles in pH 7.4 buffered solution and they have a similar release rate in pH 5.0 buffered solution. This study, therefore, confirms the potential of a novel functional block copolymers, Methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) bearing ketone Groups, for the formation of polymeric micelles for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stenzel MH. RAFT polymerization: an avenue to functional polymeric micelles for drug delivery. Chem Commun. 2008;30:3486–503.

    Article  Google Scholar 

  2. Sheng Y, Liu CS, Yuan Y, Tao XY, Yang F, Shan XQ, et al. Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan. Biomaterials. 2009;30:2340–8.

    Article  CAS  PubMed  Google Scholar 

  3. Sun TM, Du JZ, Yan LF, Mao HQ, Wang J. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials. 2008;29:4348–55.

    Article  CAS  PubMed  Google Scholar 

  4. Lo CL, Huang CK, Lin KM, Hsiue GH. Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery. Biomaterials. 2007;28:1225–35.

    Article  CAS  PubMed  Google Scholar 

  5. Son YJ, Jang JS, Cho YW, Chung H, Park RW, Kwon IC, et al. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release. 2003;91:135–49.

    Article  CAS  PubMed  Google Scholar 

  6. Canciello M, Maglio G, Nese G, Palumbo R. Poly(e-caprolactone)-poly(oxyethyl- ene) multiblock copolymers bearing along the chain regularly spaced pendant amino groups. Macromol Biosci. 2007;7:491–9.

    Article  CAS  PubMed  Google Scholar 

  7. Taniguchi I, Kuhlman WA, Mayes AM, Griffith LG. Functional modification of biodegradable polyesters through a chemoselective approach: application to biomaterial surfaces. Polym Int. 2006;55:1385–97.

    Article  CAS  Google Scholar 

  8. Hu XL, Liu S, Chen XS, Mo GJ, Xie ZG, Jing XB. Biodegradable amphiphilic block copolymers bearing protected hydroxyl groups: synthesis and characterization. Biomacromolecules. 2008;9:553–60.

    Article  CAS  PubMed  Google Scholar 

  9. Mahmud A, Xiong XB, Lavasanifar A. Novel self-associating poly(ethylene oxide)-block-poly(ε-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules. 2006;39:9419–28.

    Article  CAS  ADS  Google Scholar 

  10. Hu XL, Chen XS, Xie ZG, Liu S, Jing XB. Synthesis and characterization of amphiphilic block copolymers with allyl side-groups. J Polym Sci Part A: Polym Chem. 2007;45:5518–28.

    Article  CAS  Google Scholar 

  11. Wang L, Jia XH, Liu XH, Yuan Z, Huang JX. Synthesis and characterization of a functionalized amphiphilic diblock copolymer: MePEG-b-poly(DL-lactide-co-RS-β-malic acid). Colloid Polym Sci. 2006;285:273–81.

    Article  CAS  Google Scholar 

  12. Xiong XB, Mahmud A, Uluda H, Lavasanifar A. Multifunctional polymeric micelles for enhanced intracellular delivery of doxorubicin to metastatic cancer cells. Pharm Res. 2008;25:2555–66.

    Article  CAS  PubMed  Google Scholar 

  13. Mahmud A, Xiong XB, Lavasanifar A. Development of novel polymeric micellar drug conjugates and nano-containers with hydrolyzable core structure for doxorubicin delivery. Eur J Pharmaceut Biopharmaceut. 2008;69:923–34.

    Article  CAS  Google Scholar 

  14. Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, et al. Doxorubicin-loaded poly(ethylene glycol)–poly(ß-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release. 2000;64:143–53.

    Article  CAS  PubMed  Google Scholar 

  15. Tian Y, Ravi P, Bromberg L, Hatton TA, Tam KC. Synthesis and aggregation behavior of pluronic F87/poly(acrylic acid) block copolymer in the presence of doxorubicin. Langmuir. 2007;23:2638–46.

    Article  CAS  PubMed  Google Scholar 

  16. Li GY, Song S, Guo L, Ma SM. Self-assembly of thermo- and pH-responsive poly(acrylic acid)-b-poly(N-isopropylacrylamide) micelles for drug delivery. J Polym Sci Part A: Polym Chem. 2008;46:5028–35.

    Article  CAS  Google Scholar 

  17. Yin HQ, Bae YH. Physicochemical aspects of doxorubicin-loaded pH-sensitive polymeric micelle formulations from a mixture of poly(L-histidine)-b-poly(L-lactide)-b-poly(ethylene glycol). Eur J Pharmaceut Biopharmaceut. 2009;71:223–30.

    Article  CAS  Google Scholar 

  18. Ye YQ, Chen FY, Wu QA, Hu FQ, Du YZ, Yuan H, et al. Enhanced cytotoxicity of core modified chitosan based polymeric micelles for doxorubicin delivery. J Pharm Sci. 2009;98:704–12.

    Article  CAS  PubMed  Google Scholar 

  19. Lu DX, Wen XT, Liang J, Gu ZW, Zhang XD, Fan YJ. A pH-sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate. J Biomed Mater Res Part B: Appl Biomater. 2009;89B:177–83.

    Article  CAS  Google Scholar 

  20. Bae Y, Diezi TA, Zhao A, Kwon GS. Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release. 2007;122:324–30.

    Article  CAS  PubMed  Google Scholar 

  21. Kim DG, Lee ES, Oh KT, Gao ZG, Bae YH. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small. 2008;4:2043–50.

    Article  CAS  PubMed  Google Scholar 

  22. Sethuraman VA, Lee MC, Bae YH. A Biodegradable pH-sensitive micelle system for targeting acidic solid tumors. Pharmaceut Res. 2008;25:657–66.

    Article  CAS  Google Scholar 

  23. Huang CK, Lo CL, Chen HH, Hsiue GH. Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Adv Funct Mater. 2007;17:2291–7.

    Article  CAS  Google Scholar 

  24. Shuai XT, Nasongkl HAN, Kim S, Gao JM. Micellar carriers based on block copolymers of poly(q-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release. 2004;98:415–26.

    Article  CAS  PubMed  Google Scholar 

  25. Lin JP, Zhu JQ, Chen T, Lin SL, Cai CH, Zhang LS, et al. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials. 2009;30:108–17.

    Article  CAS  PubMed  Google Scholar 

  26. Yang XQ, Chen YH, Yuan RX, Chen GH, Blanco E, Gao JM, et al. Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer. 2008;49:3477–85.

    Article  CAS  Google Scholar 

  27. Jia ZF, Wong LJ, Davis TP, Bulmus V. One-pot conversion of RAFT-generated multifunctional block copolymers of HPMA to doxorubicin conjugated acid- and reductant-sensitive crosslinked micelles. Biomacromolecules. 2008;9:3106–13.

    Article  CAS  PubMed  Google Scholar 

  28. Chytil P, Etrych T, Konák C, Sírová M, Mrkvan T, Boucek J, et al. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J Control Release. 2008;127:121–30.

    Article  CAS  PubMed  Google Scholar 

  29. Lee YH, Park SY, Mok HJ, Park TG. Synthesis, characterization, antitumor activity of pluronic mimicking copolymer micelles conjugated with doxorubicin via acid-cleavable linkage. Bioconjugate Chem. 2008;19:525–31.

    Article  CAS  Google Scholar 

  30. Yokoyama M, Fukushima S, Uehara R, Okamoto K, Kataoka K, Sakurai Y, et al. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Release. 1998;50:79–92.

    Article  CAS  PubMed  Google Scholar 

  31. Latere JP, Lecomte P, Dubois P, Jérôme R. 2-Oxepane-1, 5-dione: a precursor of a novel class of versatile semicrystalline biodegradable (co)polyesters. Macromolecules. 2002;35:7857–9.

    Article  CAS  ADS  Google Scholar 

  32. He YY, Dai WF, Gu CH, Lang MD. Synthesis and characterization of amphiphilic functional block poly(ε-caprolactonne) bearing ketone groups. J Clin Rehab Tissue Eng Res. 2009;13:6721–4.

    CAS  Google Scholar 

  33. Fairley N, Hoang B, Allen C. Morphological control of poly(ethylene glycol)-block-poly(ε-caprolactone) copolymer aggregates in aqueous solution. Biomacromolecules. 2008;9:2283–91.

    Article  CAS  PubMed  Google Scholar 

  34. Kharakoz DP. Partial molar volumes of molecules of arbitrary shape and the effect of hydrogen bonding with water. J Solution Chem. 1992;21:569–95.

    Article  CAS  Google Scholar 

  35. Meot-Ner M, Scheiner S, Yu WO. Ionic hydrogen bonds in bioenergetics. 3 proton transport in membranes, modeled by ketone/water clusters. J Am Chem Soc. 1998;120:6980–90.

    Article  CAS  Google Scholar 

  36. Katz JJ, Ballschmiter K, Garcia-Morin M, Strain HH, Uphaus RA. Electron papamagnetic resonance of chlorophyll-water aggregates. Pans. 1968;60:100–7.

    Article  CAS  Google Scholar 

  37. Cammas S, Matsumoto T, Okano T, Sakurai Y, Kataoka K. Design of functional polymeric micelles as site-specific drug vehicles based on poly(a-hydroxy ethylene oxide-co-p-benzyl L-aspartate) block copolymers. Mater Sci Eng C. 1997;4:241–7.

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Natural Science Foundation of China (20674019 and 20804015), “Shu Guang” Project of Shanghai Municipal Education Commission, Specialized Research Fund for the Doctoral Program of Higher Education (20060251015, 200802511021), the Natural Science Foundation of Shanghai, (08ZR1406000), Shanghai Key Laboratory Project (08DZ2230500) and Shanghai Leading Academic Discipline Project (B502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lang Meidong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yueying, H., Yan, Z., Chunhua, G. et al. Micellar carrier based on methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) block copolymers bearing ketone groups on the polyester block for doxorubicin delivery. J Mater Sci: Mater Med 21, 567–574 (2010). https://doi.org/10.1007/s10856-009-3887-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3887-x

Keywords

Navigation