Skip to main content
Log in

Synthesis of PVP-coated ultra-small Fe3O4 nanoparticles as a MRI contrast agent

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Ultra-small Fe3O4 nanoparticles were prepared by using the coprecipitation method, in which the polyvinylpyrrolidone (PVP) serves as a stabilizer. The nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), infra spectrum (IR), X-ray photoelectron spectroscopy (XPS) and in vivo magnetic resonance imaging (MRI) test. The results showed that the particles’ size was determined by the dripping rate and that PVP molecules played the role of preventing the aggregation and restricting the size of Fe3O4 nanoparticles. The Fe3O4 nanoparticles with diameter from 6.5 to 1.9 nm obviously exhibited negative contrast enhancement and concentrated at the target area guided by a permanent magnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang ZD. Nanocapsules. In: Nalwa HS, editor. Encyclopedia of nanoscience and nanotechnology, vol. 6. Stevenson Ranch, CA: American Scientific Publishers; 2004. p. 77–160.

    Google Scholar 

  2. Gu HW, Xu KM, Xu CJ, Xu B, Biofunctional magnetic nano-particles for protein separation and pathogen detection. Chem Commun. 2006;941–9. doi:10.1039/b514130c.

  3. Oscar BM, María PM, Pedro T, Jesus RC, Pierre B, Martín S, et al. Fe-based nanoparticles metallic alloys as contrast agents for 395 magnetic resonance imaging. Biomaterials. 2005;26:5695–703. doi:10.1016/j.biomaterials.2005.02.020.

    Article  Google Scholar 

  4. Xie HY, Zuo C, Liu Y, Zhang ZL, Pang DW, Li XL, et al. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small. 2005;1:506–9. doi:10.1002/smll.200400136.

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka H, Sugita T, Yasunaga YJ, Shimose SJ, Deie M, Kubo T, et al. Efficiency of magnetic liposomal transforming growth factor-β 1 in the repair of articular cartilage defects in a rabbit model. J Biomed Mater Res. 2005;73A:255–63. doi:10.1002/jbm.a.30187.

    Article  CAS  Google Scholar 

  6. Yang Y, Jiang JS, Du B, Gan ZF, Qian M, Zhang P. Preparation and properties of a novel drug delivery system with both magnetic and biomolecular targeting. J Mater Sci Mater Med. 2009;20:301–7. doi:10.1007/s10856-008-3577-0.

    Article  CAS  PubMed  Google Scholar 

  7. Gou ML, Qian ZY, Wang H, Tang YB, Huang MJ, Kan B, et al. Preparation and characterization of magnetic poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprol -actone) micro-spheres. J Mater Sci Mater Med. 2008;19:1033–41. doi:10.1007/s10856-007-3230-3.

    Article  CAS  PubMed  Google Scholar 

  8. Lu Y, Yin Y, Mayers BT, Xia YN. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett. 2002;2:183–6. doi:10.1021/nl015681q.

    Article  CAS  ADS  Google Scholar 

  9. Si S, Kotal A, Mandal TK, Giri S, Kohara T. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater. 2004;16:3489–96. doi:10.1021/cm049205n.

    Article  CAS  Google Scholar 

  10. Wan SR, Huang JS, Yan HS, Liu KL. Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J Mater Chem. 2006;16:298–303. doi:10.1039/b512605c.

    Article  CAS  Google Scholar 

  11. Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 2002;124:8204–5. doi:10.1021/ja026501x.

    Article  CAS  PubMed  Google Scholar 

  12. Liz L, Lopez Quintela MA, Mira J, Rivas J. Preparation of colloidal Fe3O4 ultrafine particles in microemulsions. J Mater Sci. 1994;29:3797–801. doi:10.1007/BF00357351.

    Article  CAS  ADS  Google Scholar 

  13. Lee HS, Lee WO. A comparison of coprecipitation with microemulsion methods in the preparation of magnetite. J Appl Phys. 1999;85:5231–3. doi:10.1063/1.369953.

    Article  CAS  ADS  Google Scholar 

  14. Liu ZL, Wang X, Yao KL, Du GH, Lu QH, Ding ZH, et al. Synthesis of magnetite nanoparticles in W/O microemulsion. J Mater Sci. 2004;39:2633–6. doi:10.1023/B:JMSC.0000020046.68106.22.

    Article  CAS  ADS  Google Scholar 

  15. Lee YJ, Lee JW, Bae CJ, Park JG, Noh HJ, Park JH, et al. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Func Mater. 2005;15:503–9. doi:10.1002/adfm.200400187.

    Article  CAS  Google Scholar 

  16. Chin AB, Yaacob II. Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Tech. 2007;191:235–7. doi:10.1016/j.jmatprotec.2007.03.011.

    Article  CAS  Google Scholar 

  17. Sasmita M, Nabakumar P, Samrat M, Sudip KG, Panchanan P. A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications. J Mater Sci. 2007;42:7566–74. doi:10.1007/s10853-007-1597-7.

    Article  Google Scholar 

  18. Zhang Y, Wang SN, Ma S, Guan JJ, Li D, Zhang XD, et al. Self-assembly multifunctional nanocomposites with Fe3O4 magnetic core and CdSe/ZnS quantum dots shell. J Biomed Mater Res. 2008;85A:840–6. doi:10.1002/jbm.a.31609.

    Article  CAS  Google Scholar 

  19. Lee HY, Lim NH, Seo JA, Yuk SH, Kwak BK, Khang G, et al. Preparation and magnetic resonance imaging effect of polyvinylpyrrolidone-coated iron oxide nanoparticles. J Biomed Mater Res. 2006;79B:142–50. doi:10.1002/jbm.b.30524.

    Article  CAS  Google Scholar 

  20. Zhang Y, Liu JJ, Yang F, Zhang YJ, Yao Q, Cui TY, et al. A new strategy for assembling multifunctional nanocomposites with iron oxide and amino-terminated PAMAM dendrimers. J Mater Sci Mater Med. 2009. doi: 10.1007/s10856-009-3808-z.

  21. Ren J, Shen J, Lu SC. Dispersion and regulation of particles in liquid phase. In: Xing T, editor. Dispersion science and technology of particles. Beijing: Chemical Industry Press; 2005. p. 199.

    Google Scholar 

  22. Jiang P, Zhou JJ, Li R, Gao Y, Sun TL, Zhao XW, et al. PVP-capped twinned gold plates from nanometer to micrometer. J Nanopart Res. 2006;8:927–34. doi:10.1007/s11051-005-9046-5.

    Article  CAS  Google Scholar 

  23. Zhang ZD. Magnetic nanocapsules. J Mater Sci Tech. 2007;23:1–14.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant No. 50331030 and 50831006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liu, JY., Ma, S. et al. Synthesis of PVP-coated ultra-small Fe3O4 nanoparticles as a MRI contrast agent. J Mater Sci: Mater Med 21, 1205–1210 (2010). https://doi.org/10.1007/s10856-009-3881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3881-3

Keywords

Navigation