Skip to main content
Log in

Improved adherence and spreading of Saos-2 cells on polypropylene surfaces achieved by surface texturing and carbon nitride coating

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The adhesion and contact guidance of human primary osteogenic sarcoma cells (Saos-2) were characterized on smooth, microstructured (MST) and micro- and nano-structured (MNST) polypropylene (PP) and on the same samples with a silicon-doped carbon nitride (C3N4-Si) coating. Injection molding was used to pattern the PP surfaces and the coating was obtained by using ultra-short pulsed laser deposition (USPLD). Surfaces were characterized using atomic force microscopy and surface energy components were calculated according to the Owens-Wendt model. The results showed C3N4-Si coated surfaces to be significantly more hydrophilic than uncoated ones. In addition, there were 86% more cells in the smooth C3N4-Si coated PP compared to smooth uncoated PP and 551%/476% more cells with MST/MNST C3N4-Si coated PP than could be obtained with MST/MNST uncoated PP. Thus the adhesion, spreading and contact guidance of osteoblast-like cells was effectively improved by combining surface texturing and deposition of osteocompatible C3N4-Si coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573–83. doi:10.1016/S0142-9612(97)00144-0.

    Article  CAS  PubMed  Google Scholar 

  2. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20:2311–21. doi:10.1016/S0142-9612(99)00160-X.

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz Z, Boyan BD. Underlying mechanisms at the bone-biomaterial interface. J Cell Biochem. 1994;56:340–7. doi:10.1002/jcb.240560310.

    Article  CAS  PubMed  Google Scholar 

  4. Harrison RG. The cultivation of tissues in extraneous media as a method of morpho-genetic study. Anat Rec. 1912;6:181–93. doi:10.1002/ar.1090060404.

    Article  Google Scholar 

  5. Charest JL, Bryant LE, Garcia AJ, King WP. Hot embossing for micropatterned cell substrates. Biomaterials. 2004;25:4767–75. doi:10.1016/j.biomaterials.2003.12.011.

    Article  CAS  PubMed  Google Scholar 

  6. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573–88. doi:10.1016/S0142-9612(98)00209-9.

    Article  CAS  PubMed  Google Scholar 

  7. Mwenifumbo S, Li M, Chen J, Beye A, Soboyejo W. Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces. J Mater Sci Mater Med. 2007;18:9–23. doi:10.1007/s10856-006-0658-9.

    Article  CAS  PubMed  Google Scholar 

  8. Ismail FS, Rohanizadeh R, Atwa S, Mason RS, Ruys AJ, Martin PJ, et al. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells. J Mater Sci Mater Med. 2007;18:705–14. doi:10.1007/s10856-006-0012-2.

    Article  CAS  PubMed  Google Scholar 

  9. den Braber ET, de Ruijter JE, Smits HTJ, Ginsel LA, von Recum AF, Jansen JA. Quantitative analysis of cell proliferation and orientation on substrata with uniform parallel surface micro-grooves. Biomaterials. 1996;17:1093–9. doi:10.1016/0142-9612(96)85910-2.

    Article  Google Scholar 

  10. Levy S, Van Dalen M, Agonafer S, Soboyejo WO. Cell/surface interactions and adhesion on bioactive glass. J Mater Sci Mater Med. 2007;18:89–102. doi:10.1007/s10856-006-0666-9.

    Article  CAS  PubMed  Google Scholar 

  11. Gough JE, Notingher I, Hench LL. Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res A. 2004;68:640–50. doi:10.1002/jbm.a.20075.

    Article  CAS  PubMed  Google Scholar 

  12. Schmidt JA, von Recum AF. Macrophage response to microtextured silicone. Biomaterials. 1992;13:1059–69. doi:10.1016/0142-9612(92)90138-E.

    Article  CAS  PubMed  Google Scholar 

  13. Wang JH-C, Grood ES, Florer J, Wenstrup R. Alignment and proliferation of MC3T3-E1 osteoblasts in microgrooved silicone substrata subjected to cyclic stretching. J Biomech. 2000;33:729–35. doi:10.1016/S0021-9290(00)00013-0.

    Article  CAS  PubMed  Google Scholar 

  14. van Kooten TG, von Recum AF. Cell adhesion to textured silicone surfaces: the influence of time of adhesion and texture on focal contact and fibronectin fibril formation. Tissue Eng. 1999;5:223–40. doi:10.1089/ten.1999.5.223.

    Article  PubMed  Google Scholar 

  15. Madou MJ. Fundamentals of microfabrication: the science of miniaturization. 2nd ed. CRC Press: Boca Raton, FL; 2002. p. 1–76.

    Google Scholar 

  16. Xia Y, Whitesides GM. Soft lithography. Annu Rev Mater Sci. 1998;28:153–84. doi:10.1146/annurev.matsci.28.1.153.

    Article  CAS  Google Scholar 

  17. Puukilainen E, Rasilainen T, Suvanto M, Pakkanen TA. Superhydrophobic polyolefin surfaces: controlled micro- and nanostructures. Langmuir. 2007;23:7263–8. doi:10.1021/la063588h.

    Article  CAS  PubMed  Google Scholar 

  18. Puukilainen E, Koponen HK, Xiao Z, Suvanto S, Pakkanen TA. Nanostructured and chemically modified hydrophobic polyolefin surfaces. Colloids Surf A Physicochem Eng Asp. 2006;287:175–81. doi:10.1016/j.colsurfa.2006.03.056.

    Article  CAS  Google Scholar 

  19. Koponen HK, Saarikoski I, Korhonen T, Pääkkö M, Kuisma R, Pakkanen TT, et al. Modification of cycloolefin copolymer and poly(vinyl chloride) surfaces by superimposition of nano- and microstructures. Appl Surf Sci. 2007;253:5208–13. doi:10.1016/j.apsusc.2006.11.039.

    Article  CAS  ADS  Google Scholar 

  20. Miikkulainen V, Rasilainen T, Puukilainen E, Suvanto M, Pakkanen TA. Atomic layer deposition as pore diameter adjustment tool for nanoporous aluminum oxide injection molding masks. Langmuir. 2008;24:4473–7. doi:10.1021/la800285s.

    Article  CAS  PubMed  Google Scholar 

  21. Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001;7:55–71. doi:10.1089/107632700300003297.

    Article  CAS  PubMed  Google Scholar 

  22. van Kooten TG, Schakenraad JM, van der Mei HC, Busscher HJ. Influence of substratum wettability on the strength of adhesion of human fibroblasts. Biomaterials. 1992;13:897–904. doi:10.1016/0142-9612(92)90112-2.

    Article  PubMed  Google Scholar 

  23. Lim JY, Shaughnessy MC, Zhou Z, Noh H, Vogler EA, Donahue HJ. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials. 2008;29:1776–84. doi:10.1016/j.biomaterials.2007.12.026.

    Article  CAS  PubMed  Google Scholar 

  24. Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008;29:970–83. doi:10.1016/j.biomaterials.2007.11.009.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74:49–58. doi:10.1002/jbm.a.30320.

    CAS  PubMed  Google Scholar 

  26. Amberla T, Rekow M, Köngäs J, Asonen H, Salminen T, Viitanen N, Kulmala M, Vuoristo P, Pessa M, Lappalainen R. In: Proceedings of the 49th annual technical conference. Washington, DC; 2006. p. 79.

  27. Liu AY, Cohen ML. Prediction of new low compressibility solids. Science. 1989;245:841–2. doi:10.1126/science.245.4920.841.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Du C, Su XW, Cui FZ, Zhu XD. Morphological behaviour of osteoblasts on diamond-like carbon coating and amorphous C-N film in organ culture. Biomaterials. 1998;19:651–8. doi:10.1016/S0142-9612(97)00159-2.

    Article  CAS  PubMed  Google Scholar 

  29. Cui FZ, Li DJ. A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surf Coat Tech. 2000;131:481–7. doi:10.1016/S0257-8972(00)00809-4.

    Article  CAS  Google Scholar 

  30. Cui FZ, Qing XL, Li DJ, Zhao J. Biomedical investigations on CN x coating. Surf Coat Tech. 2005;200:1009–13. doi:10.1016/j.surfcoat.2005.02.157.

    Article  CAS  Google Scholar 

  31. Rodil SE, Olivares R, Arzate H. In vitro cytotoxicity of amorphous carbon films. Biomed Mater Eng. 2005;15:101–12.

    CAS  PubMed  Google Scholar 

  32. Rodil SE, Olivares R, Arzate H, Muhl S. Properties of carbon films and their biocompatibility using in-vitro tests. Diam Relat Mater. 2003;12:931–7. doi:10.1016/S0925-9635(02)00217-0.

    Article  CAS  Google Scholar 

  33. Kwok SCH, Yang P, Wang J, Liu X, Chu PK. Hemocompatibility of nitrogen-doped, hydrogen-free diamond-like carbon prepared by nitrogen plasma immersion ion implantation-deposition. J Biomed Mater Res A. 2004;70:107–14. doi:10.1002/jbm.a.30070.

    Article  PubMed  Google Scholar 

  34. Boyd KJ, Marton D, Todorov SS, Al-Bayati AH, Kulik J, Zuhr RA, et al. Formation of C–N thin films by ion beam deposition. J Vac Sci Technol A. 1995;13:2110–22. doi:10.1116/1.579528.

    Article  CAS  ADS  Google Scholar 

  35. Lopez S, Dunlop HM, Benmalek M, Tourillon G, Wong M-S, Sproul WD. XPS, XANES and ToF-SIMS characterization of reactively magnetron-sputtered carbon nitride films. Surf Interface Anal. 1997;25:315–23. doi:10.1002/(SICI)1096-9918(199705)25:5<315::AID-SIA238>3.0.CO;2-S.

    Article  CAS  Google Scholar 

  36. Baker MA, Hammer P. Study of the chemical composition and microstructure of ion beam-deposited CN x films including an XPS C 1s peak simulation. Surf Interface Anal. 1997;25:301–14. doi:10.1002/(SICI)1096-9918(199705)25:5<301::AID-SIA236>3.0.CO;2-A.

    Article  CAS  Google Scholar 

  37. Dawei W, Dejun F, Huaixi G, Zhihong Z, Xianquan M, Xiangjun F. Structure and characteristics of C3N4 thin films prepared by rf plasma-enhanced chemical vapor deposition. Phys Rev B. 1997;56:4949–54. doi:10.1103/PhysRevB.56.4949.

    Article  CAS  ADS  Google Scholar 

  38. Gouzman I, Brener R, Hoffman A. Nitridation of diamond and graphite surfaces by low energy N+2 ion irradiation. Surf Sci. 1995;331–333:283–8. doi:10.1016/0039-6028(95)00187-5.

    Article  Google Scholar 

  39. Franco LM, Pérez JA, Riascos H. Chemical analysis of CN x thin films produced by pulsed laser ablation. Microelectron J. 2008;39:1363–5. doi:10.1016/j.mejo.2008.01.091.

    Article  CAS  Google Scholar 

  40. Zhao Q, Liu Y, Wang C, Wang S. Bacterial adhesion on silicon-doped diamond-like carbon films. Diam Relat Mater. 2007;16:1682–7. doi:10.1016/j.diamond.2007.03.002.

    Article  CAS  Google Scholar 

  41. Wan GJ, Yang P, Fu RKY, Mei YF, Qiu T, Kwok SCH, et al. Characteristics and surface energy of silicon-doped diamond-like carbon films fabricated by plasma immersion ion implantation and deposition. Diam Relat Mater. 2006;15:1276–81. doi:10.1016/j.diamond.2005.09.042.

    Article  CAS  Google Scholar 

  42. Borisenko KB, Evangelou EA, Zhao Q, Abel EW. Contact angles of diiodomethane on silicon-doped diamond-like carbon coatings in electrolyte solutions. J Colloid Interface Sci. 2008;326:329–32. doi:10.1016/j.jcis.2008.06.045.

    Article  CAS  PubMed  Google Scholar 

  43. Bendavid A, Martin PJ, Comte C, Preston EW, Haq AJ, Magdon Ismail FS, et al. The mechanical and biocompatibility properties of DLC-Si films prepared by pulsed DC plasma activated chemical vapor deposition. Diam Relat Mater. 2007;16:1616–22. doi:10.1016/j.diamond.2007.02.006.

    Article  CAS  Google Scholar 

  44. Roy RK, Choi HW, Yi JW, Moon M-W, Lee K-R, Han DK, et al. Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films. Acta Biomater. 2009;5:249–56. doi:10.1016/j.actbio.2008.07.031.

    Article  CAS  PubMed  Google Scholar 

  45. Liu C, Zhao Q, Liu Y, Wang S, Abel EW. Reduction of bacterial adhesion on modified DLC coatings. Colloids Surf B Biointerfaces. 2008;61:182–7. doi:10.1016/j.colsurfb.2007.08.008.

    Article  CAS  PubMed  Google Scholar 

  46. Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13:1741–7. doi:10.1002/app.1969.070130815.

    Article  CAS  Google Scholar 

  47. Oliveira AL, Malafaya PB, Reis RL. Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials. 2003;24:2575–84. doi:10.1016/S0142-9612(03)00060-7.

    Article  CAS  PubMed  Google Scholar 

  48. Eriksson C, Nygren H, Ohlson K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials. 2004;25:4759–66. doi:10.1016/j.biomaterials.2003.12.006.

    Article  CAS  PubMed  Google Scholar 

  49. Tessier PY, Pichon L, Villechaise P, Linez P, Angleraud B, Mubumbila N, et al. Carbon nitride thin films as protective coatings for biomaterials: synthesis, mechanical and biocompatibility characterizations. Diam Relat Mater. 2003;12:1066–9. doi:10.1016/S0925-9635(02)00314-X.

    Article  CAS  Google Scholar 

  50. Olivares R, Rodil SE, Arzate H. In vitro studies of the biomineralization in amorphous carbon films. Surf Coat Tech. 2004;177–178:758–64. doi:10.1016/j.surfcoat.2003.08.018.

    Article  Google Scholar 

  51. Li D, Niu L. Influence of N atomic percentages on cell attachment for CN x coatings. Bull Mater Sci. 2003;26:371–5. doi:10.1007/BF02711178.

    Article  CAS  Google Scholar 

  52. Li DJ, Zhang SJ, Niu LF. Influence of NHn+ beam bombarding energy on structural characterization and cell attachment of CN x coating. Appl Surf Sci. 2001;180:270–9. doi:10.1016/S0169-4332(01)00356-7.

    Article  CAS  ADS  Google Scholar 

  53. Okpalugo TIT, Murphy H, Ogwu AA, Abbas G, Ray SC, Maguire PD, et al. Human microvascular endothelial cellular interaction with atomic N-doped DLC compared with Si-doped DLC thin films. J Biomed Mater Res B Appl Biomater. 2006;78:222–9. doi:10.1002/jbm.b.30459.

    CAS  PubMed  Google Scholar 

  54. Okpalugo TIT, Ogwu AA, Okpalugo AC, McCullough RW, Ahmed W. The human micro-vascular endothelial cells in vitro interaction with atomic-nitrogen-doped diamond-like carbon thin films. J Biomed Mater Res B Appl Biomater. 2008;85:188–95. doi:10.1002/jbm.b.30934.

    CAS  PubMed  Google Scholar 

  55. Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW. Topographical control of cell behaviour. Development. 1987;99:439–48.

    CAS  PubMed  Google Scholar 

  56. Puckett S, Pareta R, Webster TJ. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int J Nanomedicine. 2008;3:229–41.

    CAS  PubMed  Google Scholar 

  57. Rea SM, Brooks RA, Schneider A, Best SM, Bonfield W. Osteoblast-like cell response to bioactive composites-surface-topography and composition effects. J Biomed Mater Res B Appl Biomater. 2004;70:250–61. doi:10.1002/jbm.b.30039.

    Article  PubMed  Google Scholar 

  58. Green AM, Jansen JA, van der Waerden JPCM, von Recum AF. Fibroblast response to microtextured silicone surfaces: texture orientation into or out of the surface. J Biomed Mater Res. 1994;28:647–53. doi:10.1002/jbm.820280515.

    Article  CAS  PubMed  Google Scholar 

  59. Keselowsky BG, Wang L, Schwartz Z, Garcia AJ, Boyan BD. Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. J Biomed Mater Res A. 2007;80:700–10. doi:10.1002/jbm.a.30898.

    CAS  PubMed  Google Scholar 

  60. Jin CY, Zhu BS, Wang XF, Lu QH, Chen WT, Zhou XJ. Nanoscale surface topography enhances cell adhesion and gene expression of madine darby canine kidney cells. J Mater Sci Mater Med. 2008;19:2215–22. doi:10.1007/s10856-007-3323-z.

    Article  CAS  PubMed  Google Scholar 

  61. Bruinink A, Wintermantel E. Grooves affect primary bone marrow but not osteoblastic MC3T3-E1 cell cultures. Biomaterials. 2001;22:2465–73. doi:10.1016/S0142-9612(00)00434-8.

    Article  CAS  PubMed  Google Scholar 

  62. Martínez E, Engel E, Planell JA, Samitier J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann Anat. 2009;191:126–35. doi:10.1016/j.aanat.2008.05.006.

    Article  PubMed  Google Scholar 

  63. Mata A, Boehm C, Fleischman AJ, Muschler G, Roy S. Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces. J Biomed Mater Res. 2002;62:499–506. doi:10.1002/jbm.10353.

    Article  CAS  PubMed  Google Scholar 

  64. Mata A, Su X, Fleischman AJ, Roy S, Banks BA, Miller SK, et al. Osteoblast attachment to a textured surface in the absence of exogenous adhesion proteins. IEEE Trans Nanobioscience. 2003;2:287–94. doi:10.1109/TNB.2003.820268.

    Article  PubMed  Google Scholar 

  65. Turner AMP, Dowell N, Turner SWP, Kam L, Isaacson M, Turner JN, et al. Attachment of astroglial cells to microfabricated pillar arrays of different geometries. J Biomed Mater Res. 2000;51:430–41. doi:10.1002/1097-4636(20000905)51:3<430::AID-JBM18>3.0.CO;2-C.

    Article  CAS  PubMed  Google Scholar 

  66. Hamilton DW, Brunette DM. “Gap guidance” of fibroblasts and epithelial cells by discontinuous edged surfaces. Exp Cell Res. 2005;309:429–37. doi:10.1016/j.yexcr.2005.06.015.

    Article  CAS  PubMed  Google Scholar 

  67. Hamilton DW, Wong KS, Brunette DM. Microfabricated discontinuous-edge surface topographies influence osteoblast adhesion, migration, cytoskeletal organization, and proliferation and enhance matrix and mineral deposition in vitro. Calcif Tissue Int. 2006;78:314–25. doi:10.1007/s00223-005-0238-x.

    Article  CAS  PubMed  Google Scholar 

  68. Bettinger CJ, Orrick B, Misra A, Langer R, Borenstein JT. Microfabrication of poly (glycerol–sebacate) for contact guidance applications. Biomaterials. 2006;27:2558–65. doi:10.1016/j.biomaterials.2005.11.029.

    Article  CAS  PubMed  Google Scholar 

  69. Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials. 2003;24:4663–70. doi:10.1016/S0142-9612(03)00366-1.

    Article  CAS  PubMed  Google Scholar 

  70. Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials. 2007;28:2821–9. doi:10.1016/j.biomaterials.2007.02.024.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the PhD-programme in Musculoskeletal Diseases and Biomaterials, Joint Research Program in Materials Science of Kuopio and Joensuu Universities and the Otto A. Malm Foundation. The authors thank Picodeon Ltd Oy, Helsinki, Finland for providing Coldab™ thin film depositions. Ari Halvari and Mikko Laasanen from Microsensor Laboratory are thanked for AFM imaging. Laboratory assistant Sanna Miettinen, technical assistant Juhani Hakala and the staff of BioMater Centre from the University of Kuopio are acknowledged for their technical support. We also thank Ewen MacDonald for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Myllymaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myllymaa, K., Myllymaa, S., Korhonen, H. et al. Improved adherence and spreading of Saos-2 cells on polypropylene surfaces achieved by surface texturing and carbon nitride coating. J Mater Sci: Mater Med 20, 2337–2347 (2009). https://doi.org/10.1007/s10856-009-3792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3792-3

Keywords

Navigation