Skip to main content

Advertisement

Log in

Chitosan reinforced apatite–wollastonite coating by electrophoretic deposition on titanium implants

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A novel bioactive porous apatite–wollastonite/chitosan composite coating was prepared by electrophoretic deposition. The influence of synthesis parameters like pH of suspension and current density was studied and optimized. X-ray diffraction confirmed crystalline phase of apatite–wollastonite in powder as well as composite coating with coat crystallinity of 65%. Scanning electron microscope showed that the porosity had interconnections with good homogeneity between the phases. The addition of chitosan increased the adhesive strength of the composite coating. Young’s modulus of the coating was found to be 9.23 GPa. One of our key findings was sheet-like apatite growth unlike ball-like growth found in bioceramics. Role of chitosan was studied in apatite growth mechanism in simulated body fluid. In presence of chitosan, dense negatively charged surface with homogenous nucleation was the primary factor for sheet-like evolution of apatite layer. The results suggest that incorporation of chitosan with apatite–wollastonite in composite coating could provide excellent in vitro bioactivity with enhanced mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  2. Sena LA, De Andrade MC, Rossi AM, Soares GA. Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing. J Biomed Mater Res. 2002;60:1–7.

    Article  Google Scholar 

  3. Liu X, Ding C. Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys. Biomaterials. 2002;23:4065–77.

    Article  PubMed  CAS  Google Scholar 

  4. Nakamura T, Yamamuro T, Higashi S, Kokubo T, Ito S. A new glass-ceramic for bone replacement: evaluation of its bonding to bone tissue. J Biomed Mater Res. 1985;19:685–8.

    Article  PubMed  CAS  Google Scholar 

  5. Yoshii S, Kakutani Y, Yamamuro T, Nakamura T, Kitsugi T, Oka M, et al. Strength of bonding between A-W glass-ceramic and the surface of bone cortex. J Biomed Mater Res. 1988;22:327–38.

    Article  PubMed  CAS  Google Scholar 

  6. Peng P, Kumar S, Voelcker NH, Szili E, Smart RC, Griesser HJ. Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid. J Biomed Mater Res. 2005;76A:347–55.

    Article  Google Scholar 

  7. Grandfield K, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite–silica–chitosan coatings. Mater Charact. 2008;59:61–7.

    Article  CAS  Google Scholar 

  8. Pang X, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings. Mater Charact. 2007;58:339–48.

    Article  CAS  Google Scholar 

  9. Tanabe T, Okitsu N, Tachibana A, Yamauchi K. Preparation and characterization of keratin–chitosan composite film. Biomaterials. 2002;23:817–25.

    Article  PubMed  CAS  Google Scholar 

  10. Wang J, De Boer J, De Groot K. Preparation and characterization of electrodeposited calcium phosphate/chitosan coating on Ti6Al4V plates. J Dent Res. 2004;83:296–301.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao L, Chang J. Preparation and characterisation of macroporous chitosan/wollastonite composite scaffolds for tissue engineering. J Mater Sci Mater Med. 2004;15:625–9.

    Article  PubMed  CAS  Google Scholar 

  12. Liu X, Ding C, Chu PK. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials. 2004;25:1755–61.

    Article  PubMed  CAS  Google Scholar 

  13. Pattanayak DK, Prasad RC, Rao BT, Mohan TRR. Apatite Wollastonite–titanium biocomposites: synthesis and in vitro evaluation. J Am Ceram Soc. 2006;89:2172–6.

    CAS  Google Scholar 

  14. Risbud M, Saheb DN, Jog J, Bhonde R. Preparation, characterization and in vitro biocompatibility evaluation of poly(butylenes terephthalate)/wollastonite composites. Biomaterials. 2001;22:1591–7.

    Article  PubMed  CAS  Google Scholar 

  15. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  PubMed  CAS  Google Scholar 

  16. Muzzarelli RAA, Zucchini C, Ilari P, Pugnaloni A, Belmonte MM, Biagini G, et al. Osteoconductive properties of methylpyrrolidinone chitosan in animal model. Biomaterials. 1993;14:925–9.

    Article  PubMed  CAS  Google Scholar 

  17. Wang C, Ma J, Cheng W, Zhang R. Thick hydroxyapatite coatings by electrophoretic deposition. Mater Lett. 2002;57:99–105.

    Article  CAS  Google Scholar 

  18. Linder F, Feltz A. Electrophoretic deposition—a method for preparation of semiconducting oxide ceramic layers. Solid States Ionics. 1993;63–65:13–7.

    Article  Google Scholar 

  19. Ferrari B, Moreno R, Cuesta JA. A resistivity model for electrophoretic deposition. Key Eng Mater. 2006;314:175–80.

    Article  Google Scholar 

  20. Lu JX, Gallur A, Descamps M, Thierry B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med. 1999;10:111–20.

    Article  PubMed  CAS  Google Scholar 

  21. Juhasz JA, Best SM, Brooks R, Kawashita M, Miyata N, Kokubo T, et al. Mechanical properties of glass-ceramic A–W-polyethylene composites: effect of filler content and particle size. Biomaterials. 2004;25:949–55.

    Article  PubMed  CAS  Google Scholar 

  22. Yu SR, Zhang XP, He ZM, Liu YH, Liu ZH. Effects of Ce on the short-term biocompatibility of Ti-Fe-Mo-Mn-Nb-Zr alloy for dental materials. J Mater Sci Mater Med. 2004;15:687–91.

    Article  PubMed  CAS  Google Scholar 

  23. American National Standard Institute/American Dental Association. ANSI/ADA Specification No. 41. Biological evaluation of dental materials. Washington, DC: ANSI/ADA; 1979.

  24. Kim HM, Himeno T, Kokubo T, Nakamura T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 2005;26:4366–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This investigation was supported by Research Grant 04DB001 from the Department of Biotechnology, New Delhi 110 003, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayesh R. Bellare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Soni, V.P. & Bellare, J.R. Chitosan reinforced apatite–wollastonite coating by electrophoretic deposition on titanium implants. J Mater Sci: Mater Med 20, 1427–1436 (2009). https://doi.org/10.1007/s10856-009-3712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3712-6

Keywords

Navigation