Skip to main content
Log in

Quantifying the 3D macrostructure of tissue scaffolds

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The need to shift from tissue replacement to tissue regeneration has led to the development of tissue engineering and in situ tissue regeneration. Both of these strategies often employ the use of scaffolds––templates that allow cells to attach and then guide the new tissue growth. There are many design criteria for an ideal scaffold. These criteria vary depending on the tissue type and location in the body. In any application of a scaffold it is vital to be able to characterise the scaffold before it goes into in vitro testing. In vitro testing allows the cell response to be investigated before its in vivo performance is assessed. A full characterisation of events in vitro and in vivo, in three dimensions (3D), is necessary if a scaffold’s performance and effectiveness is to be fully quantified. This paper focuses on porous scaffolds for bone regeneration, suggests appropriate design criteria for a bone regenerating scaffold and then reviews techniques for obtaining the vitally important quantification of its pore structure. The techniques discussed will include newly developed methods of quantifying X-ray microtomography (μCT) images in 3D and for predicting the scaffolds mechanical properties and the likely paths of fluid flow (and hence potential cell migration). The complications in investigating scaffold performance in vitro are then discussed. Finally, the use of μCT for imaging scaffolds for in vivo tests is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Langer, J.P. Vacanti, Science 260, 920–926 (1993). doi:10.1126/science.8493529

    Article  PubMed  ADS  CAS  Google Scholar 

  2. E. Lavik, R. Langer, Appl. Microbiol. Biotechnol. 65, 1–8 (2004). doi:10.1007/s00253-004-1580-z

    Article  PubMed  CAS  Google Scholar 

  3. H. Ohgushi, A.I. Caplan, J. Biomed. Mater. Res. 48, 913–927 (1999). doi:10.1002/(SICI)1097-4636(1999)48:6<913::AID-JBM22>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  4. T. Takezawa, Biomaterials 24, 2267–2275 (2003). doi:10.1016/S0142-9612(03)00038-3

    Article  PubMed  CAS  Google Scholar 

  5. J.R. Jones, L.M. Ehrenfried, L.L. Hench, Biomaterials 27, 964–973 (2006). doi:10.1016/j.biomaterials.2005.07.017

    Article  PubMed  CAS  Google Scholar 

  6. S.F. Hulbert, S.J. Morrison, J.J. Klawitte, J. Biomed. Mater. Res. 6, 347–374 (1972). doi:10.1002/jbm.820060505

    Article  PubMed  CAS  Google Scholar 

  7. L.L. Hench, J.M. Polak, Science 295, 1014–1017 (2002). doi:10.1126/science.1067404

    Article  PubMed  ADS  CAS  Google Scholar 

  8. L.J. Gibson, M.F. Ashby, Cellular Solids Structure and Properties (Pergamon Press, Oxford, 1988)

    MATH  Google Scholar 

  9. S. Lowell, J.E. Shields, Powder Technol. 38, 121–124 (1984). doi:10.1016/0032-5910(84)80041-8

    Article  CAS  Google Scholar 

  10. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, London, 1987)

    Google Scholar 

  11. I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak, J. Biomed. Mater. Res. 55, 151–157 (2001). doi:10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  12. L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, J. Biomed. Mater. Res. 5, 117–141 (1971). doi:10.1002/jbm.820050611

    Article  Google Scholar 

  13. P. Sepulveda, J.R. Jones, L.L. Hench, J. Biomed. Mater. Res. 59, 340–348 (2002). doi:10.1002/jbm.1250

    Article  PubMed  CAS  Google Scholar 

  14. J.R. Jones, G. Poologasundarampillai, R.C. Atwood, D. Bernard, P.D. Lee, Biomaterials 28(7), 1404–1413 (2007)

    Article  PubMed  CAS  Google Scholar 

  15. Y. Hiu-Yan, Q. Ling, L. Kwong-Man, Z. Ming, L. Kwok-Sui, C.J. Chun-yiu, J. Biomed. Mater. Res. B Appl. Biomater. 75, 234–242 (2005). doi:10.1002/jbm.b.30240

    PubMed  Google Scholar 

  16. A.S.P. Lin, T.H. Barrows, S.H. Cartmell, R.E. Guldberg, Biomaterials 24, 481–489 (2003). doi:10.1016/S0142-9612(02)00361-7

    Article  PubMed  CAS  Google Scholar 

  17. S. Cartmell, K. Huynh, A. Lin, S. Nagaraja, R. Guldberg, J. Biomed. Mater. Res. A 69A, 97–104 (2004). doi:10.1002/jbm.a.20118

    Article  CAS  Google Scholar 

  18. S.T. Ho, D.W. Hutmacher, Biomaterials 27, 1362–1376 (2006). doi:10.1016/j.biomaterials.2005.08.035

    Article  PubMed  CAS  Google Scholar 

  19. R. Al-Raoush, K.A. Alshibli, Physica A 361, 441–456 (2006). doi:10.1016/j.physa.2005.05.043

    Article  ADS  Google Scholar 

  20. B.D. Porter, A.S.P. Lin, A. Peister, D. Hutmacher, R.E. Guldberg, Biomaterials 28, 2525–2533 (2007). doi:10.1016/j.biomaterials.2007.01.013

    Article  PubMed  CAS  Google Scholar 

  21. M.J. Moore, E. Jabbari, E.L. Ritman, L.C. Lu, B.L. Currier, A.J. Windebank et al., J. Biomed. Mater. Res. A 71A, 258–267 (2004). doi:10.1002/jbm.a.30138

    Article  CAS  Google Scholar 

  22. B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo, T. Nakamura, Biomaterials 27, 5871–5966 (2006). doi:10.1016/j.biomaterials.2006.08.013

    Article  Google Scholar 

  23. D. Stauffer, Percolation Theory (Taylor and Francis, London, 1985)

    MATH  Google Scholar 

  24. R.C. Atwood, J.R. Jones, P.D. Lee, L.L. Hench, Scr. Mater. 51, 1029–1033 (2004). doi:10.1016/j.scriptamat.2004.08.014

    Article  CAS  Google Scholar 

  25. A.P. Mangan, R.T. Whitaker, IEEE Trans. Vis. Comput. Graph. 5, 308–321 (1999). doi:10.1109/2945.817348

    Article  Google Scholar 

  26. R. Singh, P.D. Lee, T.C. Lindley, R.J. Dashwood, E. Ferrie, T. Imwinkelried, Acta Biomater. (2008). doi:10.1016/j.actbio.2008.06.014

    Google Scholar 

  27. S.V.N. Jaecques, H. Van Oosterwyck, L. Muraru, T. Van Cleynenbreugel, E. De Smet, M. Wevers et al., Biomaterials 25, 1683–1696 (2004). doi:10.1016/S0142-9612(03)00516-7

    Article  PubMed  CAS  Google Scholar 

  28. D. Lacroix, A. Chateau, M.P. Ginebra, J.A. Planell, Biomaterials 27, 5326–5334 (2006). doi:10.1016/j.biomaterials.2006.06.009

    Article  PubMed  CAS  Google Scholar 

  29. J.R. Jones, P.D. Lee, L.L. Hench, Philos. Trans. R. Soc. Lond. A 364, 263–281 (2006). doi:10.1098/rsta.2005.1689

    Article  ADS  CAS  Google Scholar 

  30. J.R. Jones, Mater. Today 9, 34–43 (2006). doi:10.1016/S1369-7021(06)71741-2

    Article  CAS  Google Scholar 

  31. J.R. Jones, O. Tsigkou, E.E. Coates, M.M. Stevens, J.M. Polak, L.L. Hench, Biomaterials 28, 1653–1663 (2007). doi:10.1016/j.biomaterials.2006.11.022

    Article  PubMed  CAS  Google Scholar 

  32. H. Hagenmueller, S. Hofmann, T. Kohler, H.P. Merkle, D.L. Kaplan, G. Vunjak-Novakovic et al., Ann. Biomed. Eng. 35, 1657–1667 (2007). doi:10.1007/s10439-007-9338-2

    Article  Google Scholar 

  33. T. Hara, E. Tanck, J. Homminga, R. Huiskes, Bone 31, 107–109 (2002). doi:10.1016/S8756-3282(02)00782-2

    Article  PubMed  CAS  Google Scholar 

  34. A. Hilldore, A. Wojtowicz, A.W. Johnson, J. Biomed. Mater. Res. A 82A, 1012–1021 (2007). doi:10.1002/jbm.a.31264

    Article  CAS  Google Scholar 

  35. A.C. Jones, C.H. Arns, A.P. Sheppard, D.W. Hutmacher, B.K. Milthorpe, M.A. Knackstedt, Biomaterials 28, 2491–2504 (2007). doi:10.1016/j.biomaterials.2007.01.046

    Article  PubMed  CAS  Google Scholar 

  36. S. Grampp, D. Felsemberg, G. Furhmann, U. Gross, K.J. Wolff, E.F.G. Ring (eds.), Current Research in Ostaeoporosis and Bone Mineral Measurement II (British Institute of Radiology, London, 1992)

    Google Scholar 

  37. R. Mosheiff, B.Y. Klein, I. Leichter, G. Chaimsky, A. Nyska, A. Peyser et al., Biomaterials 13, 462–466 (1992). doi:10.1016/0142-9612(92)90167-M

    Article  PubMed  CAS  Google Scholar 

  38. C. Kirker-Head, V. Karageorgiou, S. Hofmann, R. Fajardo, O. Betz, H.P. Merkle, M. Hilbe, B. von Rechenberg, J. McCool, L. Abrahamsen, A. Nazarian, E. Cory, M. Curtis, D. Kaplan, L. Meinel, Bone 41, 247–255 (2007)

    Article  PubMed  CAS  Google Scholar 

  39. E. Toyota, K. Fujimoto, Y. Ogasawara, T. Kajita, F. Shigeto, T. Matsumoto, M. Goto, F. Kajiya, Circulation 105, 621–626 (2002)

    Article  PubMed  Google Scholar 

  40. F. Plouraboue, P. Cloetens, C. Fonta, A. Steyer, F. Lauwers, J.P. Marc-Vergnes, J. Microsc.-Oxf. 215, 139–148 (2004)

    Article  CAS  MathSciNet  Google Scholar 

  41. S. Heinzer, T. Krucker, M. Stampanoni, R. Abela, E.P. Meyer, A. Schuler, P. Schneider, R. Muller, Neuroimage 32, 626–636 (2006)

    Article  PubMed  Google Scholar 

  42. S. Heinzer, G. Kuhn, T. Krucker, E. Meyer, A. Ulmann-Schuler, M. Stampanoni, M. Gassmann, H.H. Marti, R. Muller, J. Vogel, Neuroimage 39, 1549–1558 (2008)

    Article  PubMed  Google Scholar 

  43. T. Miclau, C. Lu, Z. Thompson, P. Choi, C. Puttlitz, R. Marcucio, J.A. Helms, J. Orthop. Res. 25, 1552–1558 (2007)

    Article  PubMed  Google Scholar 

  44. X.P. Zhang, C. Xie, A.S.P. Lin, H. Ito, H. Awad, J.R. Lieberman, P.T. Rubery, E.M. Schwarz, R.J. O’Keefe, R.E. Guldberg, J. Bone. Miner. Res. 20, 2124–2137 (2005)

    Article  PubMed  CAS  Google Scholar 

  45. C.L. Duvall, W.R. Taylor, D. Weiss, R.E. Guldberg, Am. J. Physiol. Heart Circ. Physiol. 287, H302–H310 (2004)

    Article  PubMed  CAS  Google Scholar 

  46. B.J.R.F. Bolland, J.M. Kanczler, D.G. Dunlop, R.O.C. Oreffo, Bone 43, 195–202 (2008)

    Article  PubMed  CAS  Google Scholar 

  47. P. Tafforeau, R. Boistel, E. Boller, A. Bravin, M. Brunet, Y. Chaimanee, P. Cloetens, M. Feist, J. Hoszowska, J.J. Jaeger, R.F. Kay, V. Lazzari, L. Marivaux, A. Nel, C. Nemoz, X. Thibault, P. Vignaud, S. Zabler, Appl. Phys. A 83, 195–202 (2006)

    Article  ADS  CAS  Google Scholar 

  48. P. Weiss, L. Obadia, D. Magne, X. Bourges, C. Rau, T. Weitkamp, I. Khairoun, J.M. Bouler, D. Chappard, O. Gauthier, G. Daculsi, Biomaterials 24, 4591–4601 (2003)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Julian Jones is a Royal Academy of Engineering/EPSRC Research Fellow. The authors gratefully acknowledge financial support for their μCT facility from the Engineering and Physical Sciences Research Council (EP/T26344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian R. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, J.R., Atwood, R.C., Poologasundarampillai, G. et al. Quantifying the 3D macrostructure of tissue scaffolds. J Mater Sci: Mater Med 20, 463–471 (2009). https://doi.org/10.1007/s10856-008-3597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3597-9

Keywords

Navigation