Skip to main content
Log in

Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A novel, porous triphasic calcium phosphate composed of nonresorbable hydroxyapatite (HAp) and resorbable tricalcium phosphate (α- and β-TCP) has been synthesized hydrothermally at a relatively low temperature. The calcium phosphate precursor for hydrothermal treatment was prepared by gel method in the presence of ascorbic acid. XRD, FT-IR, Raman analyses confirmed the presence of HAp/TCP. The surface area and average pore size of the samples were found to be 28 m2/g and 20 nm, respectively. The samples were found to be bioactive in simulated body fluid (SBF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Vallet-Regi, J.M. Gonzalez-Calbet, Prog. Solid State Chem. 32, 1–31 (2004)

    Article  CAS  Google Scholar 

  2. P.N. Kumta, C. Sfeir, D.-H. Lee, D. Olton, D. Choi, Acta Biomater. 1, 65–83 (2005)

    Article  PubMed  Google Scholar 

  3. W. Suchanek, M. Yoshimura, J. Mater. Res. 13, 94–115 (1998)

    Article  CAS  ADS  Google Scholar 

  4. G. Goller, F.N. Oktar, S. Agathopoulos, D.U. Tulyaganov, J.M.F. Ferreira, E.S. Kayali, Z. Peker, J. Sol-Gel Sci. Techn. 37, 111–115 (2006)

    Article  CAS  Google Scholar 

  5. I.-H. Oh, N. Nomura, A. Chiba, Y. Murayama, N. Masahasht, B.-T. Lee, S. Hanada, J. Mater. Sci.: Mater. Med. 16, 635–640 (2005)

    Article  CAS  Google Scholar 

  6. D. Tadic, F. Beckmann, K. Schwarz, M. Epple, Biomaterials 25, 3335–3340 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. I. Manjubala, A. Woesz, C. Pilz, M. Rumpler, N. Fratzl-Zelman, P. Roschger, J. Stampfl, P. Fratzl, J. Mater. Sci.: Mater. Med. 16, 1111–1119 (2005)

    Article  CAS  Google Scholar 

  8. T.L. Arinzeh, T. Tran, J. Mcalary, G. Daculsi, Biomaterials 26, 3631–3638 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. P. Looss, A.-M. Le Ray, G. Frimandi, G. Daculsi, C. Merle, Biomaterials 22, 2785–2794 (2001)

    Article  Google Scholar 

  10. C.R. Yang, Y.J. Wang, X.F. Chen, N.R. Zhao, Mater. Lett. 59, 3635–3640 (2005)

    Article  CAS  Google Scholar 

  11. Y. Xie, D. Chopin, C. Morin, P. Hardouin, Z. Zhu, J. Tang, J. Lu, Biomateirals 27, 2761–2767 (2006)

    Article  CAS  Google Scholar 

  12. G. Daculsi, Biomaterials 19, 1473–1478 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. G. Daculsi, R.Z. Legeros, E. Nery, K. Lynch, B. Kerebel, J. Biomed. Mat. Res. 23, 883–894 (1989)

    Article  CAS  Google Scholar 

  14. M. Sunder, N. Ramesh Babu, P. Sunita, K. Ram Kumar, T.S. Sampath Kumar, Trends Biomater. Artif. Organs. 18, 213–218 (2005)

    Google Scholar 

  15. X. Yang, Z. Wang, J. Mater. Chem. 8, 2233–2237 (1998)

    Article  CAS  Google Scholar 

  16. N. Kivrak, A.C. Tas, J. Am. Ceram. Soc. 81, 2245–2252 (1998)

    Article  CAS  Google Scholar 

  17. A.C. Tas, J. Euro. Ceram. Soc. 20, 2389–2394 (2000)

    Article  CAS  Google Scholar 

  18. K. Ozeki, H. Aoki, Y. Fukui, J. Mater. Sci. 40, 2837–2842 (2005)

    Article  CAS  ADS  Google Scholar 

  19. I. Manjubala, M. Sivakumar, Mater. Chem. Phys. 71, 272–278 (2001)

    Article  CAS  Google Scholar 

  20. M. Tamai, T. Isshiki, K. Nishio, M. Nakamura, A. Nakahira, H. Endoh, J. Mater. Sci. 41, 525–530 (2006)

    Article  CAS  ADS  Google Scholar 

  21. D. Choi, P.N. Kumta, Mater. Sci. Eng. C27, 377–381 (2007)

    Google Scholar 

  22. S.V. Dorozhkin, M. Epple, Angew Chem Int Ed 41, 3130–3146 (2002)

    Article  CAS  Google Scholar 

  23. Y. Li, W. Weng, K.C. Tam, Acta Biomater. 3, 251–254 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. J.J. Jeffrey, G.R. Martin, Biochim. Biophys. Acta (BBA) 121, 281–291 (1966)

    CAS  Google Scholar 

  25. M. Ogawara, K. Aoki, T. Okiji, H. Suda, Arch. Oral Biol. 42, 695–704 (1997)

    Article  CAS  PubMed  Google Scholar 

  26. A. Benlhachemi, S. Golec, J.R. Gavarri, Physica C 209, 353 (1993)

    Article  CAS  ADS  Google Scholar 

  27. M.A. Verges, C.F. Gonzalez, M.M. Gallego, J. Euro. Ceram. Soc. 18, 1245–1250 (1998)

    Article  Google Scholar 

  28. H. Li, B.S. Ng, K.A. Khor, P. Cheang, T.W. Clyne, Acta Mater. 52, 445–453 (2004)

    Article  CAS  Google Scholar 

  29. R.M. Wilson, J.C. Elliott, S.E.P. Dowker, L.M. Rodriguez-Lorenzo, Biomaterials 26, 1317–1327 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. S.B. Cho, F. Miyaji, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, J. Mater. Sci.: Mater. Med. 9, 279–284 (1998)

    Article  CAS  Google Scholar 

  31. T. Kokubo, H. Takadama, Biomaterials 27, 2907–2915 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. C. Ribeiro, E.C.S. Rigo, P. Sepulveda, J.C. Bressiani, A.H.A. Bressiani, Mater. Sci. Eng. C24, 631–636 (2004)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the grant from Department of Science and Technology, New Delhi through Research Project No. SR/SO/HS-05/2005. The authors wish to thank Dr. M. Palanichamy, Department of Chemistry, Anna University, Chennai for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Narayana Kalkura.

Additional information

R. Kesavamoorthy is deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vani, R., Girija, E.K., Elayaraja, K. et al. Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate. J Mater Sci: Mater Med 20 (Suppl 1), 43–48 (2009). https://doi.org/10.1007/s10856-008-3480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3480-8

Keywords

Navigation