Skip to main content

Advertisement

Log in

Construction of copper porphyrin-linked conjugated microporous polymer/carbon nanotube composite as flexible electrodes for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Porphyrin-based conjugated microporous polymers have shown the huge application potential in energy storage systems, but the low conductivity limits the practical applications. In this work, copper porphyrin-linked conjugated microporous polymer (CuTAPP-CMP) is synthesized. Then CuTAPP-CMP is combined with greatly conductive carbon nanotubes (CNTs) by simple vacuum filtration strategy. The resulting CuTAPP-CMP/CNTs-3 shows the flexible property, which enables them to be the flexible electrodes for supercapacitors (SCs). Fortunately, the flexible electrode of CuTAPP-CMP/CNTs-3 shows the specific capacitance of 207.8 F g−1 at 1 A g−1 as well as long cycle performance over 3700 cycles at 20 A g−1. The good electrochemical properties could be due to the synergic action of the high conductivity of CNTs and the high pseudocapacitance of CuTAPP-CMP. Our work provides a way to open up high-performance organic electro-active materials for SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)

    Article  CAS  Google Scholar 

  2. J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651–652 (2008)

    Article  CAS  Google Scholar 

  3. S. Najib, E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1, 2817–2827 (2019)

    Article  Google Scholar 

  4. F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017)

    Article  CAS  Google Scholar 

  5. A.M. Khattak, H. Sin, Z.A. Ghazi, X. He, B. Liang, N.A. Khan, H.R. Alanagh, A. Iqbal, L.S. Li, Z.T. Tang, Controllable fabrication of redox-active conjugated microporous polymer on reduced graphene oxide for high performance faradaic energy storage. J. Mater. Chem. A. 6, 18827–18832 (2018)

    Article  CAS  Google Scholar 

  6. G.M. Shi, J.C. Yin, Q. Li, L. Ji, S.T. Li, F.N. Shi, Facile preparation and properties of cubic TiN@CN nanocapsules as electrode materials for supercapacitors and as microwave absorbers. J. Mater. Sci. Mater. Electron. 31, 10574–10584 (2020)

    Article  CAS  Google Scholar 

  7. A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)

    Article  Google Scholar 

  8. F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014)

    Article  Google Scholar 

  9. J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 1300816–1300859 (2014)

    Article  Google Scholar 

  10. L. Mei, X. Cui, Q. Duan, Y.H. Li, X.L. Lv, H.G. Wang, Metal phthalocyanine-linked conjugated microporous polymer hybridized with carbon nanotubes as a high-performance flexible electrode for supercapacitors. Int. J. Hydrog. Energy 45, 22950–22958 (2020)

    Article  CAS  Google Scholar 

  11. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  CAS  Google Scholar 

  12. L.L. Jiang, X. Lu, J.L. Xu, Y.Q. Chen, G.J. Wan, Y.H. Ding, Free-standing microporous paper-like graphene films with electrodeposited PPy coatings as electrodes for supercapacitors. J. Mater. Sci. Mater. Electron. 26, 747–754 (2015)

    Article  CAS  Google Scholar 

  13. Y.G. Wang, Y.F. Song, Y.Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)

    Article  CAS  Google Scholar 

  14. Y. Han, Q. Zhang, N.T. Hu, X. Zhang, Y.Y. Mai, J.Q. Liu, X.L. Hua, H. Wei, Core-shell nanostructure of single-wall carbon nanotubes and covalent organic frameworks for supercapacitors. Chin. Chem. Lett. 28, 2269–2273 (2017)

    Article  CAS  Google Scholar 

  15. R. Kumar, R.K. Singh, A.R. Vaz, R. Savu, S.A. Moshkalev, Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high performance supercapacitor electrode. ACS Appl. Mater. Interfaces 9, 8880–8890 (2017)

    Article  CAS  Google Scholar 

  16. S. Faraji, F.N. Ani, Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J. Power Sources 263, 338–360 (2014)

    Article  CAS  Google Scholar 

  17. Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)

    Article  CAS  Google Scholar 

  18. M. Khalid, H. Varela, A general potentiodynamic approach for red phosphorus and sulfur nanodot incorporation on reduced graphene oxide sheets: metal-free and binder-free electrodes for supercapacitor and hydrogen evolution activities. J. Mater. Chem. A. 6, 3141–3150 (2018)

    Article  CAS  Google Scholar 

  19. J.Y. Cao, Y. Zhao, Y.F. Xu, Y. Zhang, B. Zhang, H.S. Peng, Sticky-note supercapacitors. J. Mater. Chem. A. 6, 3355–3360 (2018)

    Article  CAS  Google Scholar 

  20. Y.F. Zhu, H.F. Huang, W.Z. Zhou, G.X. Li, X.Q. Liang, J. Guo, S.L. Tang, Low temperature reduction of graphene oxide film by ammonia solution and its application for high-performance supercapacitors. J. Mater. Sci. Mater. Electron. 28, 10098–10105 (2017)

    Article  CAS  Google Scholar 

  21. H.H. Zhang, Y.N. Zhang, C. Gu, Y.G. Ma, Electropolymerized conjugated microporous poly(zinc-porphyrin) films as potential electrode materials in supercapacitors. Adv. Energy Mater. 5, 1402175 (2015)

    Article  Google Scholar 

  22. C. Fang, Y. Huang, W. Zhang, J. Han, Z. Deng, Y. Cao, H. Yang, Routes to high energy cathodes of sodium-ion batteries. Adv. Energy Mater. 5, 1501727 (2016)

    Article  Google Scholar 

  23. H.Y. Zhao, J.W. Wang, Y.H. Zheng, J. Li, X.G. Han, G. He, Y.P. Du, Organic thiocarboxylate electrodes for a room-temperature sodium-ion battery delivering an ultrahigh capacity. Angew. Chem. Int. Ed. 48, 15334–15338 (2017)

    Article  Google Scholar 

  24. A. Eftekhari, B. Fang, Electrochemical hydrogen storage: Opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int. J. Hydrog. Energy 42, 25143–25165 (2017)

    Article  CAS  Google Scholar 

  25. H. Arjun, G. Meena, K.M. Abdul, B. Saibal, Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J. Am. Chem. Soc. 140, 10941–10945 (2018)

    Article  Google Scholar 

  26. T.L. Cai, H.W. Wang, C.D. Jin, Q.F. Sun, Y.J. Nie, Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation. J. Mater. Sci. Mater. Electron. 29, 4334–4344 (2018)

    Article  CAS  Google Scholar 

  27. X. Liu, Y. Xu, Z. Guo, A. Nagai, D. Jiang, Super absorbent conjugated microporous polymers: a synergistic structural effect on the exceptional uptake of amines. Chem. Commun. 49, 3233–3235 (2013)

    Article  CAS  Google Scholar 

  28. S. Kumar, M.Y. Wani, C.T. Arranja, J.A. Silva, B. Avula, A.J. Sobral, Porphyrins as nanoreactors in the carbon dioxide capture and conversion: a review. J. Mater. Chem. A. 3, 19615–19637 (2015)

    Article  CAS  Google Scholar 

  29. A. Modak, M. Nandi, J. Mondal, A. Bhaumik, Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem. Commun. 48, 248–250 (2012)

    Article  CAS  Google Scholar 

  30. X. Liu, Y. Xu, D. Jiang, Conjugated microporous polymers as molecular sensing devices: microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing. J. Am. Chem. Soc. 134, 8738–8741 (2012)

    Article  CAS  Google Scholar 

  31. E.L. Spitler, J.W. Colson, F.J. Uribe-Romo, A.R. Woll, M.R. Giovino, A. Saldivar, W.R. Dichtel, Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew. Chem. Int. Ed. 51, 2623–2627 (2012)

    Article  CAS  Google Scholar 

  32. H. Ma, C. Li, M. Zhang, J.D. Hong, G. Shi, Graphene oxide induced hydrothermal carbonization of egg white proteins for high-performance supercapacitors. J. Mater. Chem. A. 5, 17040–17047 (2017)

    Article  CAS  Google Scholar 

  33. W. Lv, Z. Li, G. Zhou, J.J. Shao, D. Kong, X. Zheng, B. Li, F. Li, F. Kang, Q.H. Yang, Tailoring microstructure of graphene-based membrane by controlled removal of trapped water inspired by the phase diagram. Adv. Funct. Mater. 22, 3456–3463 (2014)

    Article  Google Scholar 

  34. Y.F. Deng, Y. Xie, K.X. Zou, X.L. Ji, Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A. 4, 1144–1173 (2016)

    Article  CAS  Google Scholar 

  35. X. Zhuang, F. Zhang, D. Wu, X. Feng, Graphene coupled schiff-base porous polymers: towards nitrogen-enriched porous carbon nanosheets with ultrahigh electrochemical capacity. Adv. Mater. 26, 3081–3086 (2014)

    Article  CAS  Google Scholar 

  36. X. Pan, Z. Fan, W. Chen, Y. Ding, H. Luo, X. Bao, Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 6, 507–511 (2007)

    Article  CAS  Google Scholar 

  37. J. Zhang, H. Zhao, J. Li, H. Jin, X. Yu, Y. Lei, S. Wang, In situ encapsulation of iron complex nanoparticles into biomass-derived heteroatom-enriched carbon nanotubes for high-performance supercapacitors. Adv. Energy Mater. 4, 1803221 (2019)

    Article  Google Scholar 

  38. C.L. Zhang, S.M. Zhang, Y.H. Yan, F. Xia, A.N. Huang, Y.Z. Xian, Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2,4,6-trinitrophenol. ACS Appl. Mater. Interfaces 9, 13415–13421 (2017)

    Article  CAS  Google Scholar 

  39. T.W. Kim, S.H. Jun, Y. Ha, R.K. Yadav, A. Kumar, C.Y. Yoo, I. Oh, H.K. Lim, J.W. Shin, R. Ryoo, H. Kim, J. Kim, J.O. Baeg, H. Ihee, Ultrafast charge transfer coupled with lattice phonons in two-dimensional covalent organic frameworks. Nat. Commun. 10, 1873 (2019)

    Article  Google Scholar 

  40. R. Kumar, H.J. Kim, S. Park, A. Srivastava, I.K. Oh, Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities. Carbon 79, 192–202 (2014)

    Article  CAS  Google Scholar 

  41. R. Kumar, R. Matsuo, K. Kishida, M.M. Abdel-Galeil, Y. Suda, A. Matsuda, Homogeneous reduced graphene oxide supported NiO-MnO2 ternary hybrids for electrode materials with improved capacitive performance. Electrochim. Acta 303, 246–256 (2019)

    Article  CAS  Google Scholar 

  42. Z.W. Xu, Z. Li, C. Holt, X.H. Tan, H.L. Wang, B.S. Amirkhiz, T. Stephenson, D. Mitlin, Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. Phys. Chem. Lett. 3, 2928–2933 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from Jilin Science & Technology Department (20190303069SF, 20150520025JH and 20180520166JH).

Author information

Authors and Affiliations

Authors

Contributions

LM, J-CW, and QD conceived and designed the content of this work. QD supervised the research. LM and J-CW performed the experiments. LM wrote the manuscript. All authors commented on the manuscript and agreed the version of this submission.

Corresponding author

Correspondence to Qian Duan.

Ethics declarations

Conflict of internet

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 20768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, L., Wei, JC. & Duan, Q. Construction of copper porphyrin-linked conjugated microporous polymer/carbon nanotube composite as flexible electrodes for supercapacitors. J Mater Sci: Mater Electron 32, 24953–24963 (2021). https://doi.org/10.1007/s10854-021-06952-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06952-w

Navigation