Skip to main content

Advertisement

Log in

Electrospun deposited Mn2O3/GO nanofiber composite electrode for hybrid coin cell supercapacitor devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the nanocomposite of manganese oxide (Mn2O3)/graphene oxide (GO) is deposited on a current collector using the single-nozzle electrospinning method. The effects of the GO concentration (volume %) of the Mn2O3 nanofibers (NFs) on the structural, morphological, and electrochemical properties are investigated systematically. The presence of GO in the Mn2O3 NF samples is confirmed using X-ray diffraction patterns, Raman spectroscopy, and X-ray photoelectron spectroscopy, where sp2 hybridization can be observed. The influence of the GO (volume %) in the Mn2O3 NF samples on the contribution of the capacitive and diffusion-controlled process has been calculated mathematically. GO at 5 vol% in the Mn2O3 sample exhibited a high specific capacitance of 588 Fg−1 at a current density of 0.5 mAcm−2 (2.5 Ag−1) in 1 M aqueous electrolyte with 98% cyclic stability up to 1000 cycles. Furthermore, a coin cell hybrid device was assembled using Mn2O3/GO and a Li-chip as an electrode, 1 M LiPF6 as an electrolyte, and a polypropylene sheet as a separator. This device exhibited a capacitance, an energy density, and a power density of 0.33 F (specific capacitance of 740 Fg−1), 925 Whkg−1, and 3.3 kWkg−1, respectively at a current density of 1 mAcm−2 (2.5 Ag−1) along with 90% retention in capacitance measured till 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Futaba, K. Hata, T. Yamada, T. Jiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Lijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987 (2006)

    Article  CAS  Google Scholar 

  2. E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon N. Y. 39, 77 (2001)

    Article  Google Scholar 

  3. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wamg, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103 (2009)

    Article  CAS  Google Scholar 

  4. M. Stoller, S. Park, Y. Zhu, J. An, R. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498 (2008)

    Article  CAS  Google Scholar 

  5. B.E. Conway, Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications (Kluwer Acadamic/Plenum Publisher, Amsterdam, 1999)

    Google Scholar 

  6. D. Wang, J. Zhao, F. Li, W. Ren, Z. Chen, J. Tan, I. Gentle, H. Gao, Q. Lu, Fabrication of graphene/polyaniline performance flexible electrode electropolymerization for high-composite paper via in situ anodic. ACS Nano 3, 1745 (2009)

    Article  CAS  Google Scholar 

  7. S. Korkmaz, F. Meydaneri Tezel, A. Kariper, Synthesis and characterization of GO/IrO2 thin film supercapacitor. J. Alloys Compd. 754, 14 (2018)

    Article  CAS  Google Scholar 

  8. Z. Algharaibeh, X. Liu, P. Pickup, An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor. J. Power. Sources. 187, 640 (2009)

    Article  CAS  Google Scholar 

  9. A. Teli, S. Beknalkar, D. Patil, S. Pawar, D. Dubal, V. Burute, T. Dongale, J. Shin, P. Patil, Effect of annealing temperature on charge storage kinetics of an electrospun deposited manganese oxide supercapacitor. Appl. Surf. Sci. 511, 145466 (2020)

    Article  CAS  Google Scholar 

  10. G. Binitha, M. Soumya, A. Madhavan, P. Praveen, A. Balakrishna, K. Subramanian, M. Reddy, S. Nair, A. Nair, N. Sivakumar, Electrospun α-Fe2O3 nanostructures for supercapacitor applications. J. Mater. Chem. A 1, 11698 (2013)

    Article  CAS  Google Scholar 

  11. K. Ryu, K. Kim, N. Park, Y. Park, S. Chang, Symmetric redox supercapacitor with conducting polyaniline electrodes. J. Power Sources 103, 305 (2002)

    Article  CAS  Google Scholar 

  12. E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Béguin, Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 153, 413 (2006)

    Article  CAS  Google Scholar 

  13. V. Khomenko, E. Frackowiak, F. Béguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim. Acta 50, 2499 (2005)

    Article  CAS  Google Scholar 

  14. M. Sawangphruk, J. Limtrakul, Effects of pore diameters on the pseudocapacitive property of three-dimensionally ordered macroporous manganese oxide electrodes. Mater. Lett. 68, 230 (2012)

    Article  CAS  Google Scholar 

  15. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon N. Y. 48, 3825 (2010)

    Article  CAS  Google Scholar 

  16. J. Zhang, X.S. Zhao, A comparative study of electrocapacitive properties of manganese dioxide clusters dispersed on different carbons. Carbon N. Y. 52, 1 (2013)

    Article  CAS  Google Scholar 

  17. M. Sawangphruk, P. Srimuk, P. Chiochan, A. Krittayavathananon, S. Luanwuthi, J. Limtrakul, High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon N. Y. 60, 109 (2013)

    Article  CAS  Google Scholar 

  18. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene Oxide MnO2 Nanocomposites for Supercapacitors. ACS Nano 4, 2822 (2010)

    Article  CAS  Google Scholar 

  19. L. Haghighi Poudeh, I. Letofsky-Papst, F. Cebeci, Y. Menceloglu, M. Yildiz, B. Saner Okan, Facile synthesis of single- and multi-layer Graphene/Mn3O4 integrated 3D urchin-shaped hybrid composite electrodes by core-shell electrospinning. ChemNanoMat. 5, 792 (2019)

    Article  CAS  Google Scholar 

  20. Z. Hu, Y. Chen, Q. Hou, R. Yin, Characterization of graphite oxide after heat treatment. New J. Chem. 36, 1373 (2012)

    Article  CAS  Google Scholar 

  21. P. Ramesh, S. Bhagyalakshmi, S. Sampath, Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide. J. Colloid Int. Sci. 274, 95 (2004)

    Article  CAS  Google Scholar 

  22. F. Buciuman, F. Patcas, R. Craciun, D. Zahn, Vibrational spectroscopy of bulk and supported manganese oxides. Phys. Chem. Chem. Phys. 1, 185–190 (2000)

    Article  Google Scholar 

  23. D. Gosztola, M.J. Weaver, Electroinduced structural changes in manganese dioxide + manganese hydroxide films as characterized real-time surface-enhanced Raman spectroscopy. J. Electroanal. Chem. 271, 141–154 (1989)

    Article  CAS  Google Scholar 

  24. Y. Chua, P. Stair, I. Wachs, A comparison of ultraviolet and visible Raman spectra of supported metal oxide catalysts. J. Phys. Chem. B 105, 8600 (2001)

    Article  CAS  Google Scholar 

  25. Z. Ni, Y. Wang, T. Yu, Z. Shen, Raman spectroscopy and imaging of graphene. Nano Res. 1, 273 (2008)

    Article  CAS  Google Scholar 

  26. C. Tsai et al., Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 21, 5674 (2009)

    Article  Google Scholar 

  27. H. Chen, J. He, Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment. J. Phys. Chem. C 112, 17540–17545 (2008)

    Article  CAS  Google Scholar 

  28. B. Gillot, M. Guendouzi, M. Laarj, Particle size effects on the oxidation-reduction behavior of Mn3O4 hausmannite. Mater. Chem. Phys. 70, 54–60 (2001)

    Article  CAS  Google Scholar 

  29. M. Tsuboi, T. Onishi, I. Nakagawa, T. Shimanouchi, S.-I. Mizushima, Assignments of the vibrational frequencies of glycine. Spectrochim. Acta 12, 253–261 (1958)

    Article  CAS  Google Scholar 

  30. M. Zheng, Y. Liu, K. Jiang, Y. Xiao, D. Yuan, Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio. Carbon N. Y. 48, 1224–1233 (2010)

    Article  CAS  Google Scholar 

  31. M. Sevilla, A.B. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. A Eur. J. 15, 4195–4203 (2009)

    Article  CAS  Google Scholar 

  32. S. Mac Neil et al., Plasma Co-polymerisation of two strongly interacting monomers: acrylic acid and allylamine. Plasma Process. Polym. 2, 641 (2005)

    Article  Google Scholar 

  33. T. Zhang, X. Zhang, J. Ng, H. Yang, J. Liu, D. Sun, Fabrication of magnetic cryptomelane-type manganese oxide nanowires for water treatment. Chem. Commun. 47, 1890 (2011)

    Article  CAS  Google Scholar 

  34. Y. Luo, J. Jiang, W. Zhou, H. Yang, J. Luo, X. Qi, H. Zhang, C. Li, T. Yu, Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. J. Mater. Chem. 22, 8634–8640 (2012)

    Article  CAS  Google Scholar 

  35. M. Salavati-Niasari, F. Mohandes, F. Davar, K. Saberyan, Fabrication of chain-like Mn2O3 nanostructures via thermal decomposition of manganese phthalate coordination polymers. Appl. Surf. Sci. 256, 1476 (2009)

    Article  CAS  Google Scholar 

  36. C. Goswami, K. Hazarika, P. Bharali, H. Saikia, B. Borah, Cubic Mn2O3 nanoparticles on carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Mol. Catal. 451, 153 (2017)

    Google Scholar 

  37. V. Brabers, F. Setten, P. Knapen, X-ray photoelectron spectroscopy study of the cation valencies in nickel manganite. J. Solid State Chem. 49, 93 (1983)

    Article  CAS  Google Scholar 

  38. G. Allen, S. Harris, J. Jutson, J. Dyke, A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy. Appl. Surf. Sci. 37, 111 (1989)

    Article  CAS  Google Scholar 

  39. G. Yang, Q. Zhang, W. Chang, W. Yan, Fabrication of Cd1-xZnxS/TiO2 heterostructures with enhanced photocatalytic activity. J. Alloys Compd. 580, 29 (2013)

    Article  CAS  Google Scholar 

  40. D. Prakash, C. Amente, K. Dharamvir, B. Singh, R. Singh, E.R. Shaaban, Y. Al-Douri, R. Khenata, D. Majid Darroudi, Verma, , Synthesis, purification and microstructural characterization of nickel doped carbon nanotubes for spintronic applications. Ceram. Int. 42, 5600 (2016)

    Article  CAS  Google Scholar 

  41. R. Al-Gaashania, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39, 2283 (2013)

    Article  Google Scholar 

  42. A. Bouhemadou, D. Allali, K. Boudiaf, B. Al, S. Qarni, R. Bin-Omran, Y. Al-Douri. Khenata, Electronic, optical, elastic, thermoelectric and thermodynamic properties of the spinel oxides ZnRh2O4 and CdRh2O4. J. Alloys Compd. 774, 299 (2019)

    Article  CAS  Google Scholar 

  43. M. Monir, H. Baltach, A. Abdiche, Y. Al-Douri, R. Khenata, S. Bin Omran, X. Wang, D.P. Rai, A. Bouhemadou, W.K. Ahmed, C.H. Voon, Doping-induced half-metallic ferromagnetism in vanadium and chromium-doped alkali oxides K2O and Rb2O: Ab initio method. J. Supercond. Nov. Magn. 30, 2197 (2017)

    Article  Google Scholar 

  44. A. Bouhemadou, O. Boudrifa, N. Guechi, R. Khenata, Y. Al-Douri, Ş Uğur, B. Ghebouli, S. Bin-Omran, Structural, elastic, electronic, chemical bonding and optical properties of Cu-based oxides ACuO (A = Li, Na, K and Rb): An ab initio study. Comput. Mater. Sci. 81, 561 (2014)

    Article  CAS  Google Scholar 

  45. K. Batoo, G. Kumar, Y. Yang, Y. Al-Dourid, M. Singh, R.B. Jotania, A. Imran, Structural, morphological and electrical properties of Cd2+doped MgFe2-xO4 ferrite nanoparticles. J. Alloys Compd 726, 179 (2017)

    Article  CAS  Google Scholar 

  46. A. Odeh, Y. Al-Douria, R.M. Ayub, A.S. Ibraheam, Ultrasonic effect on optical, structural, topographical and morphological studies of Cu2CdSnS4 quaternary alloy nanostructures. J. Alloys Compd. 686, 883 (2016)

    Article  Google Scholar 

  47. Y. Al-Douri, J. Waheb, M. Ameri, R. Khenata, A. Bouhemadou, A. Reshak, Morphology, analysis and properties studies of CdS nanostructures under thiourea concentration effect for photovoltaic applications. Int. J. Electrochem. Sci. 8, 10688 (2013)

    CAS  Google Scholar 

  48. F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids Principles Methodology and Applications (Academic Press, NY, 1999)

    Google Scholar 

  49. X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4, 2915 (2011)

    Article  CAS  Google Scholar 

  50. K. Park, Carboxylated graphene oxide-Mn2O3 nanorod composites for their electrochemical characteristics. J. Mater. Chem. A 2, 4292 (2014)

    Article  CAS  Google Scholar 

  51. S. Prabaharan, T. Nathan, M. Cloke, Electrode properties of Mn2O3 nanospheres synthesized by combined sonochemical/solvothermal method for use in electrochemical capacitors. J. Nanomater. 2008, 1 (2008)

    Article  Google Scholar 

  52. H. Gao, F. Xiao, C. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. App. Mat Int. 4, 2801 (2012)

    Article  CAS  Google Scholar 

  53. M. Jin, G. Han, Y. Chang, H. Zhao, H. Zhang, Flexible electrodes based on polypyrrole / manganese dioxide/polypropylene fibrous membrane composite for supercapacitor. Electrochim. Acta 56, 9838 (2011)

    Article  CAS  Google Scholar 

  54. G. Snook, P. Kao, A. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1 (2011)

    Article  CAS  Google Scholar 

  55. K. Qiu, Y. Lu, D. Zhang, J. Cheng, H. Yan, J. Xu, X. Liu, J. Kim, Y. Luo, Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 11, 687 (2015)

    Article  CAS  Google Scholar 

  56. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J Phys Chem C 113, 13103 (2009)

    Article  CAS  Google Scholar 

  57. H. Zhang, X. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277 (2011)

    Article  CAS  Google Scholar 

  58. Y. Lim, Y. Tan, H. Lim, N. Huang, W. Tan, M. Yarmo, Y. Chun, Potentiostatically deposited polypyrrole / graphene decorated nano-manganese oxide ternary fi lm for supercapacitors. Ceram. Int. 40, 3855 (2014)

    Article  CAS  Google Scholar 

  59. D. Wang, W. Zhou, R. Zhang, X. Huang, J. Zeng, Y. Mao, C. Ding, J. Zhang, J. Liu, G. Wen, MOF-derived Zn-Mn mixed oxides@carbon hollow disks with robust hierarchical structure for high-performance lithium-ion batteries. J. Mater. Chem. A 6, 2974 (2018)

    Article  CAS  Google Scholar 

  60. D. Chao, P. Liang, Z. Chen, H. Shen, X. Liu, X. Xia, Y. Zhao, S. Savilov, J. Lin, Z. Shen, Pseudocapacitive Na-Ion storage boosts high rate and areal capacity of self-branched 2d layered metal chalcogenide nanoarrays. ACS Nano 10, 10211 (2016)

    Article  CAS  Google Scholar 

  61. K. Brezesinski, J. Wang, J. Haetge, C. Reitz, S. Steinmuller, S. Tolbert, B. Smarsly, B. Dunn, T. Brezesinski, Pseudocapacitive contributions to charge storage in highly ordered mesoporous Group V transition metal oxides with iso-oriented layered nanocrystalline domains. J. Am. Chem. Soc. 132, 6982 (2010)

    Article  CAS  Google Scholar 

  62. F. Wu, S. Zhang, B. Xi, Z. Feng, D. Sun, X. Ma, J. Zhang, J. Feng, S. Xiong, Unusual formation of CoO@C ‘Dandelions’ derived from 2D Kagóme MOLs for efficient lithium storage. Adv. Energy Mater. 8, 2 (2018)

    Article  CAS  Google Scholar 

  63. T. Yuan, Y. Jiang, W. Sun, B. Xiang, Y. Li, M. Yan, B. Xu, S. Dou, Ever-increasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv. Funct. Mater. 26, 2198 (2016)

    Article  CAS  Google Scholar 

  64. C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 1 (2015)

    Google Scholar 

  65. K. Yamini Yasoda, M. Sathish Kumar, Sudip Kumar Batabyal, Polyaniline decorated manganese oxide nanoflakes coated graphene oxide as a hybrid-supercapacitor for high performance energy storage application. Ionics 26, 2493 (2020)

    Article  Google Scholar 

  66. M. Sawangphruk, P. Srimuk, P. Chiochan, A. Krittayavathananon, S. Luanwuthi, J. Limtraku, High-performance supercapacitor of manganese oxide/ reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60, 109 (2013)

    Article  CAS  Google Scholar 

  67. B. Singu, K. Yoon, Exfoliated graphene-manganese oxide nanocomposite electrode materials for supercapacitor. J. Alloys compd. 770, 1189 (2019)

    Article  CAS  Google Scholar 

  68. M. Kim, Y. Hawang, J. Kim, Graphene/MnO2-based composites reduced via different chemical agents for supercapacitors. J. Power sours. 239, 225 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF-2020R1A2C1015206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pramod S. Patil or Jae Cheol Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 212 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teli, A.M., Beknalkar, S.A., Karade, V.C. et al. Electrospun deposited Mn2O3/GO nanofiber composite electrode for hybrid coin cell supercapacitor devices. J Mater Sci: Mater Electron 33, 8844–8857 (2022). https://doi.org/10.1007/s10854-021-06920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06920-4

Navigation