Skip to main content
Log in

Electrical studies on a single, binary, and ternary nanocomposites of Mn3O4@TiO2@rGO

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work is concerned with studying the electrical and dielectric properties of a single, binary, and ternary nanocomposite of Mn3O4 (M), TiO2 (T), and reduced graphene oxide (RGO). The electrical properties of the investigated systems were studied via dc-, ac- conductivity, dielectric, and impedance spectroscopy (EIS) measurements. The electrical conductivity is found to increase in the following order: rGO > T@rGO > Ti > M@rGO > M@T > M@T@rGO > M. The dielectric constant (ε′) and dielectric losses (ε″) values of all materials showed a monotonous decrease with an exponential behavior by increasing the applied ac. Frequency. At constant frequency and temperature, the ε′ value followed the order: TiO2 > rGO > T@rGO > M@rGO > M@T > M@T@rGO > M, whereas, the ε″ value followed the order: T@rGO > T > rGO > M@rGO > M@T > M@T@rGO > M. The results obtained were explained and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

References

  1. M. Liu, Y. Wang, Z. Cheng, M. Zhang, M. Hu, J. Li, Electrospun Mn2O3 nanowrinkles and Mn3O4 nanorods: morphology and catalytic application. Appl. Surf. Sci. 313, 360–367 (2014)

    Article  CAS  Google Scholar 

  2. X. Li, P.F. Liu, L. Zhang, M.Y. Zu, Y.X. Yang, H.G. Yang, Enhancing alkaline hydrogen evolution reaction activity through Ni–Mn3O4 nanocomposites. Chem. Commun. 52, 10566 (2016)

    Article  CAS  Google Scholar 

  3. M. Fang, X. Tan, M. Liu, S. Kang, X. Hu, L. Zhang, Low-temperature synthesis of Mn3O4 hollow-tetrakaidecahedrons and their application in electrochemical capacitors. Cryst. Eng. Comm. 13, 4915–4920 (2011)

    Article  CAS  Google Scholar 

  4. A. Vázquez-Olmos, R. Redón, G. Rodríguez-Gattorno, M.E. Mata-Zamora, F. Morales-Leal, A.L. Fernández-Osorio, J.M. Saniger, One-step synthesis of Mn3O4 nanoparticles: Structural and magnetic study. J. Colloid Interf. Sci. 291(1), 175–180 (2005)

    Article  CAS  Google Scholar 

  5. D. Yan, S. Cheng, R.F. Zhuo, J.T. Chen, J.J. Feng, H.T. Feng, H.J. Li, Z.G. Wu, J. Wang, P.X. Yan, Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. J. Nano. Technol. 20(10), 105706 (2009)

    CAS  Google Scholar 

  6. G. Kaur, P. Negi, M. Kaur, R. Sharma, R.J. Konwar, A. Mahajan, Morpho-structural and opto-electrical properties of chemically tuned nanostructured TiO2. Ceram. Intern. 44(15), 18484–18490 (2018)

    Article  CAS  Google Scholar 

  7. E. Karaoǧlu, H. Deligöz, H. Sözeri, A. Baykal, M.S. Toprak, Hydrothermal synthesis and characterization of PEG-Mn3O4 nanocomposite. J. Nano-Micro Lett. 3, 25–33 (2011). https://doi.org/10.3786/nml.v3i1

    Article  Google Scholar 

  8. Y. Xie, L. Zhou, C. Huang, H. Huang, J. Lu, Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application. Electrochim. Acta. 53(10), 3643–3649 (2008)

    Article  CAS  Google Scholar 

  9. H.T. Fang, M. Liu, D.W. Wang, T. Sun, D.S. Guan, F. Li, J. Zhou, T.K. Sham, H.M. Cheng, Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. J. Nano technol. 20(22), 225701–225707 (2009)

    Google Scholar 

  10. M. El-Shahat, M. Mochtar, M.M. Rashad, M.A. Mousa, Single and ternary nano composite electrodes of Mn3O4/TiO2/rGO for supercapacitors. J. Solid Stat. Elect. (2021). https://doi.org/10.1007/s10008-020-04837-2

    Article  Google Scholar 

  11. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. J. Nature. 438, 197–200 (2005)

    Article  CAS  Google Scholar 

  12. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum hall effect and Berry’s phase in graphene. J. Nature. 438, 201–204 (2005)

    Article  CAS  Google Scholar 

  13. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheet. J. Nature. 446, 60–63 (2007)

    Article  CAS  Google Scholar 

  14. H.G. Yu, C.L. Chu, P.K. Chu, Self-assembly and enhanced visible-light-driven photocatalytic activity of reduced graphene oxide-Bi2WO6 photocatalysts. J. Nano. Technol. Rev. 6(6), 505–516 (2017)

    CAS  Google Scholar 

  15. Z. Jiao et al., Carboxymethyl cellulose-grafted graphene oxide for efficient antitumor drug delivery. Nano. Technol. Rev. 7(4), 291–301 (2018)

    CAS  Google Scholar 

  16. Y. Luo, D. Kong, J. Luo, Y. Wang, D. Zhang, K. Qiu, C. Cheng, C.M. Li, T. Yu, Seed assisted synthesis of Co3O4@α-Fe2O3 core–shell nanoneedle arrays for lithium-ion battery anode with high capacity. RSC Adv. 4, 13241–13249 (2014)

    Article  CAS  Google Scholar 

  17. L. Hou, L. Lian, L. Zhang, G. Pang, C. Yuan, X. Zhang, Self-sacrifice template fabrication of hierarchical mesoporous bi-component-active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium-ion battery. Adv. Funct. Mater. 25(2), 238–246 (2015)

    Article  CAS  Google Scholar 

  18. J. Zhu, R. Duan, S. Zhang, N. Jiang, Y. Zhang, J. Zhu, The application of graphene in lithium ion battery electrode materials. SpringerPlus. 3, 585 (2014)

    Article  CAS  Google Scholar 

  19. H. Yin, C. Zhang, F. Liu, Y. Hou, Hybrid of iron nitride and nitrogen- doped graphene aerogel as synergistic catalyst for oxygen reduction reaction. J. Adv. Funct. Mater. 24(20), 2930 (2014). https://doi.org/10.1002/adfm.201303902

    Article  CAS  Google Scholar 

  20. A. Jana, E. Scheer, S. Polarz, Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 8, 688–714 (2017)

    Article  CAS  Google Scholar 

  21. T. Liu, S. Sun, Z. Zang, X. Li, X. Sun, F. Caoa, J. Wu, Effects of graphene with different sizes as conductive additives on the electrochemical performance of a LiFePO4 cathode. J. RSC Adv. 7, 20882–20887 (2017)

    Article  CAS  Google Scholar 

  22. L. Solymar, D. Walsh, R. R. A. Syms, Electrical properties of materials, Ninth Edition, (Oxford university press, 2014).

  23. M. E. Achour, R. Touahni, R. Messoussi, M. Elaatmani, M.A. Ali, Dielectric Materials and Applications. Mater. Res. Proceed. 1, (2016)

  24. R.K. Nainani, P. Thakur, Facile synthesis of TiO2-RGO composite with enhanced performance for the photocatalytic mineralization of organic pollutants. J. Water Sci Technol. 73(8), 1927–1936 (2016)

    Article  CAS  Google Scholar 

  25. J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. J. Chem. Mater. 24, 1158–1164 (2012)

    Article  CAS  Google Scholar 

  26. A.L. Patterson, The scherrer formula for x-ray particle size determination. Phys Rev. 56, 978–982 (1939)

    Article  CAS  Google Scholar 

  27. D. Kong, L.T. Le, Y. Li, J.L. Zunino, W. Lee, Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir 28(37), 13467–13472 (2012)

    Article  CAS  Google Scholar 

  28. J.M. Boyero et al., Influence of the synthesis parameters on the structural and textural properties of precipitated manganese oxides. Int. J. Inorg. Mater. 3(7), 889–899 (2001)

    Article  Google Scholar 

  29. G.J. de, A.A. Soler-Illia, A. Louis, C. Sanchez, Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self assembly. Chem. of Mater. 14(2), 750–759 (2002)

    Article  CAS  Google Scholar 

  30. D. Joung, V. Singh, S. Park, A. Schulte, S. SeaL, S.I. Khondaker, Anchoring ceria nanoparticles on reduced graphene oxide and their electronic transport properties. J. Phys. Chem. C. 115(50), 24494–24500 (2011)

    Article  CAS  Google Scholar 

  31. M.S.S. Shah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl. Mater. Interf. 8(8), 3893–3901 (2012)

    Article  CAS  Google Scholar 

  32. J. Wang, H. Zhao, J. Song, T. Zhu, W. Xu, Structure-Activity relationship of manganese oxide catalysts for the catalytic oxidation of (chloro)-VOCs. Catalysts. 9, 26 (2019). https://doi.org/10.3390/catal9090726

    Article  CAS  Google Scholar 

  33. B.V. Dimas et al., Atomic-Scale investigation on the evolution of TiO2 anatase prepared by a sonochemical route and treated with NaOH. Materials (Basel). 13, 685 (2020). https://doi.org/10.3390/ma13030685

    Article  CAS  Google Scholar 

  34. R.B. Belgacem, M. Chaari, A. Matoussi, Studies on structural and electrical properties of ZnO/TiO2 composite materials. J. Alloys Compd. 651, 49–58 (2015)

    Article  CAS  Google Scholar 

  35. V.C. Bose, K. Maniammal, G. Madhu, C.L. Veenas, A.S.A. Raj, V. Biju, Electrical conductivity of nanocrystalline Mn3O4 synthesized through a novel sol-gel route. Mater. Sci. and Eng. 73, 012084 (2015). https://doi.org/10.1088/1757-899X/73/1/012084

    Article  CAS  Google Scholar 

  36. R. Asmatulu, A. Karthikeyan, D.C. Bell, S. Ramanathan, M.J. Aziz, Synthesis and variable temperature electrical conductivity studies of highly ordered TiO2 nanotubes. J. Mater. Sci. 44, 4613–4616 (2009)

    Article  CAS  Google Scholar 

  37. A.M. Abo, E.L. Ata, M.K.E. Nimr, S.M. Attia, D. El Kony, A.H. Al-Hammadi, Studies of AC electrical conductivity and initial magnetic permeability of rare-earth-substituted Li–Co ferrites. J. Magn. Magn. Mater. 297(1), 33–43 (2006)

    Article  CAS  Google Scholar 

  38. S.R. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. J. Adv. Phys. 36, 135–217 (1987)

    Article  CAS  Google Scholar 

  39. A.S. Das, M. Roy, D. Biswas, R. Kundu, A. Acharya, D. Roy, S. Bhattacharya, Ac conductivity of transition metal oxide doped glassy nanocomposite systems: temperature and frequency dependency. Mater. Res. Express. 5, 095201 (2018)

    Article  CAS  Google Scholar 

  40. M.A. Darwish et al., Investigation of AC-measurements of epoxy/ferrite composites. Nanomater. 10(3), 492 (2020). https://doi.org/10.3390/nano10030492

    Article  CAS  Google Scholar 

  41. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio Frequencies. Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  42. A. Rado’n, D. Lukowiec, M. Kremzer, J. Mikula, P. Wlodarczyk, Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Materials. 11, 735 (2018)

    Article  CAS  Google Scholar 

  43. C.H. Rayssi, S. El Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 18, 17139 (2018)

    Article  Google Scholar 

  44. M. Yang et al., The preparation and dielectric properties of dielectric ceramic composites with controllable thermal expansion: SrTiO3/ZrMg. J. Mater. Sci. Mater. Electron. 31, 347 (2020)

    Article  CAS  Google Scholar 

  45. A. Ashok, T. Somaiah, D. Ravinder, C. Venkateshwarlu, C. Reddy, K. Rao, M. Prasad, Electrical properties of cadmium substitution in nickel ferrites. World J. Condens. Matter Phys. 2, 257–266 (2012)

    Article  CAS  Google Scholar 

  46. D.Z. Chen, G.S. Wang, S. He, J. Liu, L. Guo, M.S. Cao, Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. J. Mater. Chem. A. 1, 5996–6003 (2013)

    Article  CAS  Google Scholar 

  47. H.J. Wu, L.D. Wang, S.L. Guo, Y.M. Wang, Z.Y. Shen, Electromagnetic and microwave-absorbing properties of highly ordered mesoporous carbon supported by gold nanoparticles. J. Mater. Chem. Phys. 133, 965–970 (2012)

    Article  CAS  Google Scholar 

  48. M. Zong, Y. Huang, Y. Zhao, X. Sun, C.H. Qu, D.D. Luo, J.B. Zheng, Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites. J. RSC Adv. 45, 23638–23648 (2013)

    Article  CAS  Google Scholar 

  49. B. Wen, X.X. Wang, W.Q. Cao, H.L. Shi, M.M. Lu, G. Wang, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. J. Nanoscale. 6, 5754–5761 (2014)

    Article  CAS  Google Scholar 

  50. X.F. Zhang, X.L. Dong, H. Huang, B. Lv, J.P. Lei, C.J. Choi, Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J. Phys. D: Appl. Phys. 40(17), 5383 (2007)

    Article  CAS  Google Scholar 

  51. C.R. Bowen, A.W. Tavernor, J. Luo, R. Stevens, Microstructural, design of sensor materials using the core-shell concept. J. Eur. Ceram. Soc. 19, 149–154 (1999)

    Article  CAS  Google Scholar 

  52. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: One- step internal barrier layer capacitor. J. Appl. Phys. Lett. 80, 2153–2155 (2002)

    Article  CAS  Google Scholar 

  53. B. Yang, Y. Wang, P.-Y. Qian, Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. J. BMC Bioinformatics. 17, 135 (2016). https://doi.org/10.1186/s12859-016-0992-y

    Article  CAS  Google Scholar 

Download references

Funding

No Funding was recieved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mousa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shahat, M., Mokhtar, M., Rashad, M.M. et al. Electrical studies on a single, binary, and ternary nanocomposites of Mn3O4@TiO2@rGO. J Mater Sci: Mater Electron 32, 10224–10239 (2021). https://doi.org/10.1007/s10854-021-05678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05678-z

Navigation