Skip to main content

Advertisement

Log in

Electrochemical exfoliation of molybdenum disulfide nanosheets for high-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) molybdenum disulfide (MoS2) nanomaterials have emerged as promising candidates for constructing excellent supercapacitors, but the lack of large-scale, efficient and low-cost methods for preparing MoS2 nanosheets severely hinders its practical application. This study demonstrates an accessible and efficient approach for electrochemical exfoliating bulk MoS2 into high-quality MoS2 nanosheets with size distribution in the range of 1–3 μm and a thickness of several nanometers in an easily available inorganic salt solution. Furthermore, we construct symmetric all-solid-state supercapacitors based on exfoliated MoS2 nanosheets. The 2D structure will provide stable channels to facilitate the intercalation/desorption of ions during charge and discharge, and to a certain extent can prevent deposition and agglomeration. Therefore, compared with the unexfoliated MoS2, as-prepared MoS2 nanosheets show great improvement in supercapacitor performance (the specific capacitance increases from the original 130 F g−1 to 215 F g−1 at 5 A g−1, for instance). In detail, the electrode possesses a specific capacitance of 285 F g−1 at a current density of 2 A g−1 and maintains the great capacitance retention of 83.8% at 8 A g−1. Moreover, the supercapacitor exhibits a high energy density of 136.8 Wh kg−1 at a power density of 2550 Wh kg−1. This work provides basic research on the preparation of 2D nanomaterials by electrochemical exfoliation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the results of this study are from the corresponding authors. All data are obtained through reasonable experimental methods and all experimental data are true and valid.

References

  1. H. Huang, M. Yan, C. Yang, H. He, Q. Jiang, L. Yang, Z. Lu, Z. Sun, X. Xu, Y. Bando, Graphenenanoarchitectonics: recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv. Mater. 31(48), 1903415 (2019)

    Article  CAS  Google Scholar 

  2. D. Nandi, V.B. Mohan, A.K. Bhowmick, D. Bhattacharyya, Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review. J. Mater. Sci. 21, 1–26 (2020)

    Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  4. L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, Role of sulfur vacancies and undercoordinated Mo regions in MoS2nanosheets toward the evolution of hydrogen. ACS Nano 13(6), 6824–6834 (2019)

    Article  CAS  Google Scholar 

  5. T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanov, H. Ji, Z. Qin, Z. Wu, 2D/2D heterojunction of Ti3C2/gC3N4nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale. 11(17), 8138–8149 (2019)

    Article  CAS  Google Scholar 

  6. M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenidenanosheets. Nat. Chem. 5(4), 263 (2013)

    Article  Google Scholar 

  7. R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk, M. Terrones, Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Accounts Chem. Res. 48(1), 56–64 (2014)

    Article  Google Scholar 

  8. W. Peng, W. Wang, G. Han, Y. Huang, Y. Zhang, Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization. Desalination 473(114191), 289 (2020)

    Google Scholar 

  9. X. Wang, J. Hu, W. Liu, G. Wang, J. An, J. Lian, Ni–Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance. J. Mater. Chem. A 3(46), 23333–23344 (2015)

    Article  CAS  Google Scholar 

  10. G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. NanoLett. 11(10), 4438–4442 (2011)

    Article  CAS  Google Scholar 

  11. H. Liu, B. Chen, L. Liao, P. Fan, Y. Hai, Y. Wu, G. Lv, L. Mei, H. Hao, J. Xing, The influences of Mg intercalation on the structure and supercapacitivebehaviors of MoS2. J. Mater. Sci. 54(20), 13247–13254 (2019)

    Article  CAS  Google Scholar 

  12. X. Yu, S. Yun, J.S. Yeon, P. Bhattacharya, L. Wang, S.W. Lee, X. Hu, H.S. Park, Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 8(13), 1702930 (2018)

    Article  Google Scholar 

  13. L. Lin, W. Lei, S. Zhang, Y. Liu, G.G. Wallace, J. Chen, Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 19, 408–423 (2019)

    Article  Google Scholar 

  14. T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 7(1), 209–231 (2014)

    Article  CAS  Google Scholar 

  15. J. Yu, X. Hu, H. Li, X. Zhou, T. Zhai, Large-scale synthesis of 2D metal dichalcogenides. J. Mater. Chem. C. 6(17), 4627–4640 (2018)

    Article  CAS  Google Scholar 

  16. Y. Shi, H. Li, L.-J. Li, Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44(9), 2744–2756 (2015)

    Article  CAS  Google Scholar 

  17. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013)

    Article  CAS  Google Scholar 

  18. L. Niu, J.N. Coleman, H. Zhang, H. Shin, M. Chhowalla, Z. Zheng, Production of two-dimensional nanomaterials via liquid-based direct exfoliation. Small. 12(3), 272–293 (2016)

    Article  CAS  Google Scholar 

  19. J. Wang, K.K. Manga, Q. Bao, K.P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 133(23), 8888–8891 (2011)

    Article  CAS  Google Scholar 

  20. S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W. Blom, X. Feng, Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. 130(47), 15717–15721 (2018)

    Article  Google Scholar 

  21. I. Khakpour, A. RabieiBaboukani, A. Allagui, C. Wang, Bipolar exfoliation and in situ deposition of high-quality graphene for supercapacitor application. ACS Appl. Energy Mater. 2(7), 4813–4820 (2019)

    Article  CAS  Google Scholar 

  22. A. Ambrosi, M. Pumera, Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 47(19), 7213–7224 (2018)

    Article  CAS  Google Scholar 

  23. Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu, Y. Wang, C. Jia, P. Chen, X. Duan, C. Wang, Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–258 (2018)

    Article  CAS  Google Scholar 

  24. A. Ejigu, I.A. Kinloch, E. Prestat, R.A. Dryfe, A simple electrochemical route to metallic phase trilayer MoS2: evaluation as electrocatalysts and supercapacitors. J. Mater. Chem. A 5(22), 11316–11330 (2017)

    Article  CAS  Google Scholar 

  25. B. Wang, R. Hu, J. Zhang, Z. Huang, H. Qiao, L. Gong, X. Qi, 2D/2D SnS2/MoS2 layered heterojunction for enhanced supercapacitor performance. J. Am. Ceram. Soc. 60, 72–81 (2019)

    Google Scholar 

  26. P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. 20(5–6), 329–338 (2015)

    Article  CAS  Google Scholar 

  27. N. Liu, P. Kim, J.H. Kim, J.H. Ye, S. Kim, C.J. Lee, Large-area atomically thin MoS2nanosheets prepared using electrochemical exfoliation. ACS Nano 8(7), 6902–6910 (2014)

    Article  CAS  Google Scholar 

  28. F. Li, M. Xue, X. Zhang, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Advanced composite 2D energy materials by simultaneous anodic and cathodic exfoliation. Adv. Energy Mater. 8(12), 1702794 (2018)

    Article  Google Scholar 

  29. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012)

    Article  CAS  Google Scholar 

  30. B. Chakraborty, H.R. Matte, A. Sood, C. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 44(1), 92–96 (2013)

    Article  CAS  Google Scholar 

  31. X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, J. Zhong, A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. J. Mater. Chem. A 5(14), 6581–6588 (2017)

    Article  CAS  Google Scholar 

  32. X. Yang, L. Zhao, J. Lian, Arrays of hierarchical nickel sulfides/MoS2nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. J. Power Sources 343, 373–382 (2017)

    Article  CAS  Google Scholar 

  33. X. Liu, X. Qi, Z. Zhang, L. Ren, G. Hao, Y. Liu, Y. Wang, K. Huang, X. Wei, J. Li, Electrochemically reduced graphene oxide with porous structure as a binder-free electrode for high-rate supercapacitors. RSC Adv. 4(26), 13673–13679 (2014)

    Article  CAS  Google Scholar 

  34. D. Vikraman, K. Karuppasamy, S. Hussain, A. Kathalingam, A. Sanmugam, J. Jung, H.-S. Kim, One-pot facile methodology to synthesize MoS2-graphene hybrid nanocomposites for supercapacitors with improved electrochemical capacitance. Compos. Part B 161, 555–563 (2019)

    Article  CAS  Google Scholar 

  35. X. Wang, J. Ding, S. Yao, X. Wu, Q. Feng, Z. Wang, B. Geng, High supercapacitor and adsorption behaviors of flower-like MoS 2 nanostructures. J. Mater. Chem. A 2(38), 15958–15963 (2014)

    Article  CAS  Google Scholar 

  36. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016)

    Article  CAS  Google Scholar 

  37. K.J. Samdani, S.H. Kim, J.H. Park, S.H. Hong, K.T. Lee, Morphology-controlled synthesis of Co3O4 composites with bio-inspired carbons as high-performance supercapacitor electrode materials. J. Ind. Engin Chem. 74, 96–102 (2019)

    Article  CAS  Google Scholar 

  38. M. Liu, Z. Wang, J. Liu, G. Wei, J. Du, Y. Li, C. An, J. Zhang, Synthesis of few-layer 1T′-MoTe 2 ultrathin nanosheets for high-performance pseudocapacitors. J. Mater. Chem. A 5(3), 1035–1042 (2017)

    Article  CAS  Google Scholar 

  39. K.-J. Huang, L. Wang, Y.-J. Liu, Y.-M. Liu, H.-B. Wang, T. Gan, L.-L. Wang, Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance. Int. J. Hydrogen Energy. 38(32), 14027–14034 (2013)

    Article  CAS  Google Scholar 

  40. M.-C. Liu, Y. Xu, Y.-X. Hu, Q.-Q. Yang, L.-B. Kong, W.-W. Liu, W.-J. Niu, Y.-L. Chueh, Electrostatically charged MoS2/graphene oxide hybrid composites for excellent electrochemical energy storage devices. ACS Appl. Mater. Interfaces 10(41), 35571–35579 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants from Provincial Natural Science Foundation of Hunan (No. 2019JJ50612), Hunan Key Laboratory of Two-Dimensional Materials (No. 2018TP1010), Open Fund based on innovation platform of Hunan colleges and universities (No. 18K032), National Natural Science Foundation of China (No. 11504312), Scientific Research Fund of Hunan Provincial Education Department (No. 18A059), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_17R91) and Science and Technology Program of Xiangtan (No. CXY-ZD20172002).

Author information

Authors and Affiliations

Authors

Contributions

RH led the experiment, processed the data and wrote the paper; ZH analyzed the data and modified its grammar; BW and HQ conducted the experiment and discussed the results; XQ proposed the research plan and analyzed the data.

Corresponding authors

Correspondence to Zongyu Huang or Xiang Qi.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist, and the manuscript is original work and has not been published in any journal or magazine before. The manuscript has no conflicts of interest and all authors agree to the publication of the paper.

Ethical approval

The authors declare that they have no conflict of interest, and the manuscript is original work and has not been published in any journal or magazine before. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Huang, Z., Wang, B. et al. Electrochemical exfoliation of molybdenum disulfide nanosheets for high-performance supercapacitors. J Mater Sci: Mater Electron 32, 7237–7248 (2021). https://doi.org/10.1007/s10854-021-05432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05432-5

Navigation