Skip to main content
Log in

Development and current situation of flexible and transparent EM shielding materials

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The application of electromagnetic (EM) technology has greatly promoted the progress and development of society, and also brought the side effects of EM interference (EMI). In the fields of visualization windows, transparent wearable devices, and aerospace equipment, flexibility and transparency have become the performance requirements of EMI shielding materials. Materials such as metal-based materials, MXenes, carbon-based materials, and conductive polymers show the potential for flexibility and transparency and lots of cases have been developed. This article summarizes the flexible and transparent properties of mainstream EMI shielding materials, and evaluates their potential as flexible and transparent EMI shielding materials. Finally, the research progress of flexible and transparent EMI shielding materials based on different advanced technologies is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright 2020, ACS Applied Materials & Interfaces [38]. b Flexible EMI shielding film based on CuNWs [44]. Copyright 2020, Composites Part B: Engineering. c Flexible and transparent electromagnetic shielding film-based AgNWs [63]. Copyright 2019, Applied Surface Science

Fig. 6

Copyright 2020, Advanced Electronic Materials. b Foam based on MXene [68]. Copyright 2017, Advanced Materials. c Aerogel based on MXene [71]. Copyright 2019, Angewandte Chemie International Edition, prepared by MXenes and their EMI SE

Fig. 7
Fig. 8
Fig. 9

Copyright 2017, ACS Applied Materials & Interfaces

Fig. 10

Copyright 2020, Applied Surface Science

Fig. 11

Copyright 2010, Synthetic Metals

Fig. 12

Copyright 2019, Advanced Materials Technologies

Fig. 13

Copyright 2017, ACS Applied Materials & Interfaces

Fig. 14

Copyright 2020, ACS Nano. b The process and principle of graphene welding AgNWs as auxiliary material [131]. Copyright 2019, Science Bulletin. c The process and principle of RGO welding AgNWs as auxiliary material [132]. Copyright 2020, ACS Nano. d The process and principle of NaBH4 welding AgNWs as auxiliary material [7]. Copyright 2020, Nanoscale

Fig. 15

Copyright 2020, ACS Nano

Fig. 16

Copyright 2018, Advanced Materials Interfaces

Fig. 17

Copyright 2019, npj Flexible Electronics

Similar content being viewed by others

References

  1. A.J. McDowell, T.H. Hubing, Analysis and comparison of plane wave shielding effectiveness decompositions. IEEE Trans. Electromagn. C. 56, 1711–1714 (2014)

    Article  Google Scholar 

  2. S. Geetha, K.K. Satheesh Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials—a review. J. Appl. Polym. Sci. 112, 2073–2086 (2009)

    Article  CAS  Google Scholar 

  3. L. Jia, K. Ding, R. Ma, H. Wang, W. Sun, D. Yan, B. Li, Z. Li, Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Adv. Mater. Technol. 4, 1800503 (2019)

    Article  Google Scholar 

  4. Y. Chen, L. Pang, Y. Li, H. Luo, G. Duan, C. Mei, W. Xu, W. Zhou, K. Liu, S. Jiang, Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos. A 135, 105960 (2020)

    Article  CAS  Google Scholar 

  5. D. Wanasinghe, F. Aslani, A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Compos. B 176, 107207 (2019)

    Article  CAS  Google Scholar 

  6. L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020)

    Article  CAS  Google Scholar 

  7. X. Zhu, J. Xu, F. Qin, Z. Yan, A. Guo, C. Kan, Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Nanoscale 12, 14589–14597 (2020)

    Article  CAS  Google Scholar 

  8. Y. Wan, P. Zhu, S. Yu, R. Sun, C. Wong, W. Liao, Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115, 629–639 (2017)

    Article  CAS  Google Scholar 

  9. J. Pu, X. Zha, L. Tang, L. Bai, R. Bao, Z. Liu, M. Yang, W. Yang, Human skin-inspired electronic sensor skin with electromagnetic interference shielding for the sensation and protection of wearable electronics. Acs Appl. Mater. Interfaces 10, 40880–40889 (2018)

    Article  CAS  Google Scholar 

  10. J. Liu, Q. Guo, S. Mao, Z. Chen, X. Zhang, Y. Yang, X. Zhang, Templated synthesis of a 1D Ag nanohybrid in the solid state and its organized network for strain-sensing applications. J. Mater. Chem. C 6, 10730–10738 (2018)

    Article  CAS  Google Scholar 

  11. C.J. Zhang, B. Anasori, A. Seral-Ascaso, S. Park, N. McEvoy, A. Shmeliov, G.S. Duesberg, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017)

    Article  CAS  Google Scholar 

  12. W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu, H. Jiang, F. Chen, Q. Fu, Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5, 3748–3756 (2017)

    Article  CAS  Google Scholar 

  13. P. Saini, V. Choudhary, S.K. Dhawan, Electrical properties and EMI shielding behavior of highly thermally stable polyaniline/colloidal graphite composites. Polym. Adv. Technol. 20, 355–361 (2009)

    Article  CAS  Google Scholar 

  14. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, P.C. Eklund, Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6, 1141–1145 (2006)

    Article  CAS  Google Scholar 

  15. Saini, P. In Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes; IntechOpen (2012).

  16. K. Song, S. Kim, S. Jeong, D. Kim, K. Son, J. Heo, K. Han, Y. Jung, H. Kim, J. Kim. Measurement, Simulation and Mathematical Estimation of Magnetic Field Shielding Effectiveness of Sputtered Shielding Materials using Spiral Coils. IEEE, 47–51 (2018).

  17. P. Saini, M. Arora, G. Gupta, B.K. Gupta, V.N. Singh, V. Choudhary, High permittivity polyaniline–barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale 5, 4330 (2013)

    Article  CAS  Google Scholar 

  18. V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized graphene-PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 296, 894–898 (2011)

    Article  CAS  Google Scholar 

  19. B. Zhang, Y. Du, P. Zhang, H. Zhao, L. Kang, X. Han, P. Xu, Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 130, 1909–1916 (2013)

    Article  CAS  Google Scholar 

  20. L. Zhou, M. Wu, Z. Huang, H. He, Research on electromagnetic interference shielding effectiveness of sisal fiber/carbon black/HDPE composites by tri-screw extrusion molding. AIP Conf. Proc. 1713, 160001 (2016)

    Article  Google Scholar 

  21. D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu et al., Electromagnetic interference shielding polymers and nanocomposites—a review. Polym. Rev. 59, 280–337 (2019)

    Article  CAS  Google Scholar 

  22. P. Saini, V. Choudhary, Structural details, electrical properties, and electromagnetic interference shielding response of processable copolymers of aniline. J. Mater. Sci. 48, 797–804 (2013)

    Article  CAS  Google Scholar 

  23. P. Verma, P. Saini, V. Choudhary, Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater. Des. 88, 269–277 (2015)

    Article  CAS  Google Scholar 

  24. P. Saini, V. Choudhary, S.K. Dhawan, Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization. Polym. Adv. Technol. 23, 343–349 (2012)

    Article  CAS  Google Scholar 

  25. R.B. Jagadeesh Chandra, B. Shivamurthy, S.D. Kulkarni, M.S. Kumar, Hybrid polymer composites for EMI shielding application—a review. Mater. Res. Express 6, 82008 (2019)

    Article  CAS  Google Scholar 

  26. R. Bhattacharyya, O. Prakash, S. Roy, A.P. Singh, T.K. Bhattacharya, P. Maiti, S. Bhattacharyya, S. Das, Graphene oxide-ferrite hybrid framework as enhanced broadband absorption in gigahertz frequencies. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-48487-5

    Article  Google Scholar 

  27. M.A. Soto-Oviedo, O.A. Araújo, R. Faez, M.C. Rezende, M. De Paoli, Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synth. Met. 156, 1249–1255 (2006)

    Article  CAS  Google Scholar 

  28. E.J. Jelmy, S. Ramakrishnan, N.K. Kothurkar, EMI shielding and microwave absorption behavior of Au-MWCNT/polyaniline nanocomposites. Polym. Adv. Technol. 27, 1246–1257 (2016)

    Article  CAS  Google Scholar 

  29. J. Joseph, K. Deshmukh, K. Chidambaram, M. Faisal, E. Selvarajan, K.K. Sadasivuni, M.B. Ahamed, S.K.K. Pasha, Dielectric and electromagnetic interference shielding properties of germanium dioxide nanoparticle reinforced poly(vinyl chloride) and poly(methylmethacrylate) blend nanocomposites. J. Mater. Sci.: Mater. Electron. 29, 20172–20188 (2018)

    CAS  Google Scholar 

  30. S.J. Wang, D.S. Li, L. Jiang, Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv. Mater. Interfaces 6, 1900961 (2019)

    Article  CAS  Google Scholar 

  31. D. Li, T. Li, E. Li, Y. Zhang, A 2.5-D angularly stable frequency selective surface using via-based structure for 5G EMI Shielding. IEEE Trans. Electromagn. C 60, 768–775 (2018)

    Article  Google Scholar 

  32. D. Li, T. Li, R. Hao, H. Chen, W. Yin, H. Yu, E. Li, A Low-profile broadband bandpass frequency selective surface with two rapid band edges for 5G near-field applications. IEEE Trans. Electromagn. C 59, 670–676 (2017)

    Article  Google Scholar 

  33. J. Wang, B. Wang, Z. Wang, L. Chen, C. Gao, B. Xu, Z. Jia, G. Wu, Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties. J. Colloid Interface Sci. 586, 479–490 (2020)

    Article  CAS  Google Scholar 

  34. C. Wang, B. Wang, X. Cao, J. Zhao, L. Chen, L. Shan, H. Wang, G. Wu, 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption. Compos. B 205, 108529 (2021)

    Article  CAS  Google Scholar 

  35. Z. Gao, Z. Jia, K. Wang, X. Liu, L. Bi, G. Wu, Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem. Eng. J. 402, 125951 (2020)

    Article  CAS  Google Scholar 

  36. J. Ma, X. Wang, W. Cao, C. Han, H. Yang, J. Yuan, M. Cao, A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures. Chem. Eng. J. 339, 487–498 (2018)

    Article  CAS  Google Scholar 

  37. X. Bao, G. Shi, X. Wang, Q. Li, F. Shi, S. Li, Effect of nitrogen-doping content on microwave absorption performances of Ni@NC nanocapsules. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04876-5

    Article  Google Scholar 

  38. C. Yuan, J. Huang, Y. Dong, X. Huang, Y. Lu, J. Li, T. Tian, W. Liu, W. Song, Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave Fabry-Pérot interference and optical antireflection. Acs Appl. Mater. Interfaces 12, 26659–26669 (2020)

    Article  CAS  Google Scholar 

  39. C. Jiang, Q. Li, S. Fan, Q. Guo, S. Bi, X. Wang, X. Cao, Y. Liu, J. Song, Hyaline and stretchable haptic interfaces based on serpentine-shaped silver nanofiber networks. Nano Energy 73, 104782 (2020)

    Article  CAS  Google Scholar 

  40. N. Sun, C. Jiang, Q. Li, D. Tan, S. Bi, J. Song, Performance of OLED under mechanical strain: a review. J. Mater. Sci.: Mater. Electron. 31, 20688–20729 (2020)

    CAS  Google Scholar 

  41. Y. Yu, C.M. Ma, C. Teng, Y. Huang, S. Lee, I. Wang, M. Wei, Electrical, morphological, and electromagnetic interference shielding properties of silver nanowires and nanoparticles conductive composites. Mater. Chem. Phys. 136, 334–340 (2012)

    Article  CAS  Google Scholar 

  42. Y. Chen, Y. Li, M. Yip, N. Tai, Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles. Compos. Sci. Technol. 80, 80–86 (2013)

    Article  CAS  Google Scholar 

  43. S. Wu, M. Zou, Z. Li, D. Chen, H. Zhang, Y. Yuan, Y. Pei, A. Cao, Robust and stable Cu nanowire@graphene core-shell aerogels for ultraeffective electromagnetic interference shielding. Small 14, 1800634 (2018)

    Article  CAS  Google Scholar 

  44. R. Ravindren, S. Mondal, K. Nath, N.C. Das, Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites. Compos. B 164, 559–569 (2019)

    Article  CAS  Google Scholar 

  45. M.H. Al-Saleh, G.A. Gelves, U. Sundararaj, Copper nanowire/polystyrene nanocomposites: lower percolation threshold and higher EMI shielding. Compos. A 42, 92–97 (2011)

    Article  CAS  Google Scholar 

  46. G.A. Gelves, M.H. Al-Saleh, U. Sundararaj, Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation. J. Mater. Chem. 21, 829–836 (2011)

    Article  CAS  Google Scholar 

  47. Y. Wan, P. Zhu, S. Yu, R. Sun, C. Wong, W. Liao, Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14, 1800534 (2018)

    Article  CAS  Google Scholar 

  48. L.Q. Cortes, S. Racagel, A. Lonjon, E. Dantras, C. Lacabanne, Electrically conductive carbon fiber/PEKK/silver nanowires multifunctional composites. Compos. Sci. Technol. 137, 159–166 (2016)

    Article  CAS  Google Scholar 

  49. T. Lee, S. Lee, Y.G. Jeong, Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. Acs Appl. Mater. Interfaces 8, 13123–13132 (2016)

    Article  CAS  Google Scholar 

  50. L. Jia, G. Zhang, L. Xu, W. Sun, G. Zhong, J. Lei, D. Yan, Z. Li, Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. Acs Appl. Mater. Interfaces 11, 1680–1688 (2018)

    Article  CAS  Google Scholar 

  51. H.Y. Choi, T. Lee, S. Lee, J. Lim, Y.G. Jeong, Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements. Compos. Sci. Technol. 150, 45–53 (2017)

    Article  CAS  Google Scholar 

  52. S.R. Das, Q. Nian, M. Saei, S. Jin, D. Back, P. Kumar, D.B. Janes, M.A. Alam, G.J. Cheng, Single-layer graphene as a barrier layer for intense UV laser-induced damages for silver nanowire network. ACS Nano 9, 11121–11133 (2015)

    Article  CAS  Google Scholar 

  53. J. Ma, M. Zhan, K. Wang, Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding. Acs Appl. Mater. Interfaces 7, 563–576 (2014)

    Article  CAS  Google Scholar 

  54. F. Fang, Y. Li, H. Xiao, N. Hu, S. Fu, Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material. J. Mater. Chem. C 4, 4193–4203 (2016)

    Article  CAS  Google Scholar 

  55. D.G. Kim, J.H. Choi, D. Choi, S.W. Kim, Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires. Acs Appl. Mater. Interfaces 10, 29730–29740 (2018)

    Article  CAS  Google Scholar 

  56. Y. Han, Y. Liu, L. Han, J. Lin, P. Jin, High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 115, 34–42 (2017)

    Article  CAS  Google Scholar 

  57. B.J. Jeon, C. Hudaya, J.K. Lee, Pilot-scale electron cyclotron resonance-metal organic chemical vapor deposition system for the preparation of large-area fluorine-doped SnO2 thin films. J. Vac. Sci. Technol. A 34, 31501 (2016)

    Article  CAS  Google Scholar 

  58. D. Kim, Y. Kim, J. Kim, Transparent and flexible film for shielding electromagnetic interference. Mater. Des. 89, 703–707 (2016)

    Article  CAS  Google Scholar 

  59. X. Zhang, Y. Zhong, Y. Yan, Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films. Phys. Status Solidi (a) 215, 1800014 (2018)

    Article  CAS  Google Scholar 

  60. M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R.K. Li, Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28, 7101–7106 (2012)

    Article  CAS  Google Scholar 

  61. L. Jia, D. Yan, X. Liu, R. Ma, H. Wu, Z. Li, Highly efficient and reliable transparent electromagnetic interference shielding film. Acs Appl. Mater. Interfaces 10, 11941–11949 (2018)

    Article  CAS  Google Scholar 

  62. X. Liang, T. Zhao, P. Zhu, Y. Hu, R. Sun, C. Wong, Room-temperature nanowelding of a silver nanowire network triggered by hydrogen chloride vapor for flexible transparent conductive films. Acs Appl. Mater. Interfaces 9, 40857–40867 (2017)

    Article  CAS  Google Scholar 

  63. H. Yang, S. Bai, X. Guo, H. Wang, Robust and smooth UV-curable layer overcoated AgNW flexible transparent conductor for EMI shielding and film heater. Appl. Surf. Sci. 483, 888–894 (2019)

    Article  CAS  Google Scholar 

  64. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th Anniversary Article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014)

    Article  CAS  Google Scholar 

  65. M. Bayat, H. Yang, F. Ko, Effect of iron oxide nanoparticle size on electromagnetic properties of composite nanofibers. J. Compos. Mater. 52, 1723–1736 (2017)

    Article  CAS  Google Scholar 

  66. M. Cao, Y. Cai, P. He, J. Shu, W. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019)

    Article  CAS  Google Scholar 

  67. M. Hemath, S. Mavinkere Rangappa, V. Kushvaha, H.N. Dhakal, S. Siengchin, A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym. Compos. 41(10), 3940–3965 (2020)

    Article  CAS  Google Scholar 

  68. J. Liu, H. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z. Yu, Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017)

    Article  CAS  Google Scholar 

  69. M. Li, M. Han, J. Zhou, Q. Deng, X. Zhou, J. Xue, S. Du, X. Yin, Q. Huang, Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Adv. Electron. Mater. 4, 1700617 (2018)

    Article  CAS  Google Scholar 

  70. J. Liu, Z. Liu, H.B. Zhang, W. Chen, Z. Zhao, Q.W. Wang, Z.Z. Yu, Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6, 1901094 (2020)

    Article  CAS  Google Scholar 

  71. S. Shi, B. Qian, X. Wu, H. Sun, H. Wang, H.B. Zhang, Z.Z. Yu, T.P. Russell, Self-assembly of MXene-surfactants at liquid–liquid interfaces: from structured liquids to 3D aerogels. Angew. Chem. Int. Ed. 58, 18171–18176 (2019)

    Article  CAS  Google Scholar 

  72. M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C 5, 2488–2503 (2017)

    Article  CAS  Google Scholar 

  73. Z. Liu, Y. Zhang, H. Zhang, Y. Dai, J. Liu, X. Li, Z. Yu, Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C 8, 1673–1678 (2020)

    Article  CAS  Google Scholar 

  74. A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May, Y. Gogotsi, M.W. Barsoum, A.T. Fafarman, Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016)

    Article  CAS  Google Scholar 

  75. M. Mariano, O. Mashtalir, F.Q. Antonio, W.H. Ryu, B. Deng, F. Xia, Y. Gogotsi, A.D. Taylor, Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale 8, 16371–16378 (2016)

    Article  CAS  Google Scholar 

  76. A. Ali, A. Belaidi, S. Ali, M.I. Helal, K.A. Mahmoud, Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique. J. Mater. Sci.: Mater. Electron. 27, 5440–5445 (2016)

    CAS  Google Scholar 

  77. J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L. Näslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014)

    Article  CAS  Google Scholar 

  78. K. Hantanasirisakul, M. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C.E. Ren, M.W. Barsoum, Y. Gogotsi, Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2, 1600050 (2016)

    Article  CAS  Google Scholar 

  79. G.R. Berdiyorov, Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: first-principles calculations. Aip Adv. 6, 55105 (2016)

    Article  CAS  Google Scholar 

  80. D. Hu, X. Huang, S. Li, P. Jiang, Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 188, 107995 (2020)

    Article  CAS  Google Scholar 

  81. H. Tang, H. Feng, H. Wang, X. Wan, J. Liang, Y. Chen, Highly conducting MXene–silver nanowire transparent electrodes for flexible organic solar cells. Acs Appl. Mater. Interfaces 11, 25330–25337 (2019)

    Article  CAS  Google Scholar 

  82. D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39, 279–285 (2001)

    Article  CAS  Google Scholar 

  83. F. Zhang, W. Cui, B. Wang, B. Xu, X. Liu, X. Liu, Z. Jia, G. Wu, Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities. Compos. B 204, 108491 (2021)

    Article  CAS  Google Scholar 

  84. Y. Zheng, Y. Song, T. Gao, S. Yan, H. Hu, F. Cao, Y. Duan, X. Zhang, Lightweight and hydrophobic three-dimensional wood-derived anisotropic magnetic porous carbon for highly efficient electromagnetic interference shielding. Acs Appl. Mater. Interfaces 12, 40802–40814 (2020)

    Article  CAS  Google Scholar 

  85. K.K. Halder, M. Tomar, V.K. Sachdev, V. Gupta, Development of polyvinylidene fluoride–graphite composites as an alternate material for electromagnetic shielding applications. Mater. Res. Express 6, 75324 (2019)

    Article  CAS  Google Scholar 

  86. V.K. Sachdev, K. Patel, S. Bhattacharya, R.P. Tandon, Electromagnetic interference shielding of graphite/acrylonitrile butadiene styrene composites. J. Appl. Polym. Sci. 120, 1100–1105 (2011)

    Article  CAS  Google Scholar 

  87. G. Kenanakis, K.C. Vasilopoulos, Z. Viskadourakis, N.M. Barkoula, S.H. Anastasiadis, M. Kafesaki, E.N. Economou, C.M. Soukoulis, Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films. Appl. Phys. A 122, 802 (2016)

    Article  CAS  Google Scholar 

  88. N. Joseph, J. Varghese, M.T. Sebastian, Graphite reinforced polyvinylidene fluoride composites an efficient and sustainable solution for electromagnetic pollution. Compos. B 123, 271–278 (2017)

    Article  CAS  Google Scholar 

  89. J. Wu, D.D.L. Chung, Improving colloidal graphite for electromagnetic interference shielding using 0.1 μm diameter carbon filaments. Carbon 41, 1313–1315 (2003)

    Article  CAS  Google Scholar 

  90. J. Wu, D.D.L. Chung, Pastes for electromagnetic interference shielding. J. Electron. Mater. 34, 1255–1258 (2005)

    Article  CAS  Google Scholar 

  91. Y. Chen, Y.L. Li, X.G. Ma, R.L. Sang, Study on multilayer electromagnetic shielding coating fabrics based on graphite and nickel. Adv. Mater. Res. 677, 157–160 (2013)

    Article  CAS  Google Scholar 

  92. T. Wang, Z. Liu, M. Lu, B. Wen, Q. Ouyang, Y. Chen, C. Zhu, P. Gao, C. Li, M. Cao et al., Graphene–Fe3O4 nanohybrids: synthesis and excellent electromagnetic absorption properties. J. Appl. Phys. 113, 24314 (2013)

    Article  CAS  Google Scholar 

  93. K. Hantanasirisakul, M. Alhabeb, A. Lipatov, K. Maleski, B. Anasori, P. Salles, C. Ieosakulrat, P. Pakawatpanurut, A. Sinitskii, S.J. May et al., Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 31, 2941–2951 (2019)

    Article  CAS  Google Scholar 

  94. H. He, S. Cheng, Y. Lian, Y. Xing, G. He, Z. Huang, M. Wu, Electrical conductivity and electromagnetic interference shielding effectiveness of carbon black/sisal fiber/polyamide/polypropylene composites. J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.42801

    Article  Google Scholar 

  95. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  Google Scholar 

  96. C. Li, Y. Li, Q. Zhao, Y. Luo, G. Yang, Y. Hu, J. Jiang, Electromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compression. Acs Appl. Mater. Interfaces 12, 30686–30694 (2020)

    Article  CAS  Google Scholar 

  97. Z. Chen, C. Xu, C. Ma, W. Ren, H. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)

    Article  CAS  Google Scholar 

  98. N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014)

    Article  CAS  Google Scholar 

  99. S.K. Hong, K.Y. Kim, T.Y. Kim, J.H. Kim, S.W. Park, J.H. Kim, B.J. Cho, Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 23, 455704 (2012)

    Article  CAS  Google Scholar 

  100. Z. Lu, L. Ma, J. Tan, H. Wang, X. Ding, Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing. 2D Materials 4, 25021 (2017)

    Article  CAS  Google Scholar 

  101. R. Xiong, K. Hu, A.M. Grant, R. Ma, W. Xu, C. Lu, X. Zhang, V.V. Tsukruk, Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv. Mater. 28, 1501–1509 (2016)

    Article  CAS  Google Scholar 

  102. L. Ma, Z. Lu, J. Tan, J. Liu, X. Ding, N. Black, T. Li, J. Gallop, L. Hao, Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene. Acs Appl. Mater. Interfaces 9, 34221–34229 (2017)

    Article  CAS  Google Scholar 

  103. S. Kim, J. Oh, M. Kim, W. Jang, M. Wang, Y. Kim, H.W. Seo, Y.C. Kim, J. Lee, Y. Lee et al., Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition. Acs Appl. Mater. Interfaces 6, 17647–17653 (2014)

    Article  CAS  Google Scholar 

  104. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  CAS  Google Scholar 

  105. Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5, 2131–2134 (2005)

    Article  CAS  Google Scholar 

  106. F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111, 61301 (2012)

    Article  CAS  Google Scholar 

  107. R.F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92, 2793–2810 (2010)

    Article  Google Scholar 

  108. J. Park, H. Rho, A. Cha, H. Bae, S.H. Lee, S. Ryu, T. Jeong, J. Ha, Transparent carbon nanotube web structures with Ni-Pd nanoparticles for electromagnetic interference (EMI) shielding of advanced display devices. Appl. Surf. Sci. 516, 145745 (2020)

    Article  CAS  Google Scholar 

  109. H. Xu, S.M. Anlage, L. Hu, G. Gruner, Microwave shielding of transparent and conducting single-walled carbon nanotube films. Appl. Phys. Lett. 90, 183119 (2007)

    Article  CAS  Google Scholar 

  110. Y. Wang, X. Jing, Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Adv. Technol. 16, 344–351 (2005)

    Article  CAS  Google Scholar 

  111. P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J. Phys. Chem. C 116, 13403–13412 (2012)

    Article  CAS  Google Scholar 

  112. M.S. Kim, H.K. Kim, S.W. Byun, S.H. Jeong, Y.K. Hong, J.S. Joo, K.T. Song, J.K. Kim, C.J. Lee, J.Y. Lee, PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synth. Met. 126, 233–239 (2002)

    Article  CAS  Google Scholar 

  113. H. Zhao, L. Hou, Y. Lu, Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel (LF/PPy/Ni) composites. Mater. Des. 95, 97–106 (2016)

    Article  CAS  Google Scholar 

  114. L. Vovchenko, L. Matzui, V. Oliynyk, Y. Milovanov, Y. Mamunya, N. Volynets, A. Plyushch, P. Kuzhir, Polyethylene composites with segregated carbon nanotubes network: low frequency plasmons and high electromagnetic interference shielding efficiency. Materials 13, 1118 (2020)

    Article  CAS  Google Scholar 

  115. X. Mei, L. Lu, Y. Xie, W. Wang, Y. Tang, K.S. Teh, An ultra-thin carbon-fabric/graphene/poly(vinylidene fluoride) film for enhanced electromagnetic interference shielding. Nanoscale 11, 13587–13599 (2019)

    Article  CAS  Google Scholar 

  116. A. Nazir, A review of polyvinylidene fluoride (PVDF), polyurethane (PU), and polyaniline (PANI) composites-based materials for electromagnetic interference shielding. J. Thermoplast. Compos. (2020). https://doi.org/10.1177/0892705720925120

    Article  Google Scholar 

  117. J. Zhu, S. Wei, N. Haldolaarachchige, D.P. Young, Z. Guo, Electromagnetic field shielding polyurethane nanocomposites reinforced with core–shell Fe–silica nanoparticles. J. Phys. Chem. C 115, 15304–15310 (2011)

    Article  CAS  Google Scholar 

  118. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113, 919–926 (2009)

    Article  CAS  Google Scholar 

  119. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth. Met. 161, 1522–1526 (2011)

    Article  CAS  Google Scholar 

  120. B.R. Kim, H.K. Lee, E. Kim, S. Lee, Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films. Synth. Met. 160, 1838–1842 (2010)

    Article  CAS  Google Scholar 

  121. W. Yuan, J. Yang, F. Yin, Y. Li, Y. Yuan, Flexible and stretchable MXene/Polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process. Compos. Commun. 19, 90–98 (2020)

    Article  Google Scholar 

  122. S. Greco, M.S. Sarto, A. Tamburrano. Shielding performances of ITO transparent windows: Theoretical and experimental characterization. IEEE, 1–6 (2008).

  123. N. Erdogan, F. Erden, A.T. Astarlioglu, M. Ozdemir, S. Ozbay, G. Aygun, L. Ozyuzer, ITO/Au/ITO multilayer thin films on transparent polycarbonate with enhanced EMI shielding properties. Curr. Appl. Phys. 20, 489–497 (2020)

    Article  Google Scholar 

  124. D.H. Kim, H.K. Yoon, D.H. Shin, R. Murakami, Electromagnetic wave shielding properties of ITO/PET thin film by film thickness. Key Eng. Mater. 345–346, 1585–1588 (2007)

    Article  Google Scholar 

  125. D. Tan, C. Jiang, Q. Li, S. Bi, J. Song, Silver nanowire networks with preparations and applications: a review. J. Mater. Sci.: Mater. Electron. 31, 15669–15696 (2020)

    CAS  Google Scholar 

  126. T. Song, Y. Chen, C. Chung, Y.M. Yang, B. Bob, H. Duan, G. Li, K. Tu, Y. Huang, Y. Yang, Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 8, 2804–2811 (2014)

    Article  CAS  Google Scholar 

  127. T. Chen, H. Yang, S. Bai, Y. Zhang, X. Guo, Facile preparation of high conductive silver electrodes by dip-coating followed by quick sintering. R. Soc. Open Sci. 7, 191571 (2020)

    Article  CAS  Google Scholar 

  128. Y. Huang, Y. Tian, C. Hang, Y. Liu, S. Wang, M. Qi, H. Zhang, J. Zhao, Self-limited nanosoldering of silver nanowires for high-performance flexible transparent heaters. Acs Appl. Mater. Interfaces 11, 21850–21858 (2019)

    Article  CAS  Google Scholar 

  129. C. Huang, S. Gupta, C. Lo, N. Tai, Highly transparent and excellent electromagnetic interference shielding hybrid films composed of sliver-grid/(silver nanowires and reduced graphene oxide). Mater. Lett. 253, 152–155 (2019)

    Article  CAS  Google Scholar 

  130. W. Chen, L. Liu, H. Zhang, Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene–silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano (2020). https://doi.org/10.1021/acsnano.0c01635

    Article  Google Scholar 

  131. N. Zhang, Z. Wang, R. Song, Q. Wang, H. Chen, B. Zhang, H. Lv, Z. Wu, D. He, Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci. Bull. 64, 540–546 (2019)

    Article  CAS  Google Scholar 

  132. Y. Yang, S. Chen, W. Li, P. Li, J. Ma, B. Li, X. Zhao, Z. Ju, H. Chang, L. Xiao et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14, 8754–8765 (2020)

    Article  CAS  Google Scholar 

  133. X. Liang, J. Lu, T. Zhao, X. Yu, Q. Jiang, Y. Hu, P. Zhu, R. Sun, C.P. Wong, Facile and efficient welding of silver nanowires based on UVA-induced nanoscale photothermal process for roll-to-roll manufacturing of high-performance transparent conducting films. Adv. Mater. Interfaces 6, 1801635 (2018)

    Article  CAS  Google Scholar 

  134. S. Lin, H. Wang, F. Wu, Q. Wang, X. Bai, D. Zu, J. Song, D. Wang, Z. Liu, Z. Li et al., Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding. npj Flex. Electron. 3, 1–8 (2019)

    Article  CAS  Google Scholar 

  135. X. Wang, K. Chen, L. Liu, N. Xiang, Z. Ni, Dielectrophoresis-based multi-step nanowire assembly on a flexible superstrate. Nanotechnology 29, 25301 (2018)

    Article  CAS  Google Scholar 

  136. C. Lee, Y. Oh, I.S. Yoon, S.H. Kim, B. Ju, J. Hong, Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices. Sci. Rep. 8, 1–10 (2018)

    Google Scholar 

  137. W. Chung, S. Park, S. Joo, H. Kim, UV-assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes. Nano Res. 11, 2190–2203 (2018)

    Article  CAS  Google Scholar 

  138. Z. Cui, Y. Han, Q. Huang, J. Dong, Y. Zhu, Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale 10, 6806–6811 (2018)

    Article  CAS  Google Scholar 

  139. T. Hu, S. Xuan, L. Ding, X. Gong, Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Mater. Des. 156, 528–537 (2018)

    Article  CAS  Google Scholar 

  140. T.G. Yun, M. Park, D. Kim, D. Kim, J.Y. Cheong, J.G. Bae, S.M. Han, I. Kim, All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 13, 3141–3150 (2019)

    Article  CAS  Google Scholar 

  141. J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim, J. Kwon, P. Won, S. Hong, S.H. Ko, Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. Acs Appl. Mater. Interfaces 9, 44609–44616 (2017)

    Article  CAS  Google Scholar 

  142. Y. Sun, B. Gates, B. Mayers, Y. Xia, Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165–168 (2002)

    Article  CAS  Google Scholar 

  143. T.D. Lazzara, G.R. Bourret, R.B. Lennox, T.G.M. van de Ven, Polymer templated synthesis of AgCN and Ag nanowires. Chem. Mater. 21, 2020–2026 (2009)

    Article  CAS  Google Scholar 

  144. M. Mazur, Electrochemically prepared silver nanoflakes and nanowires. Electrochem. Commun. 6, 400–403 (2004)

    Article  CAS  Google Scholar 

  145. D. Zhang, L. Qi, J. Ma, H. Cheng, Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem. Mater. 13, 2753–2755 (2001)

    Article  CAS  Google Scholar 

  146. Z. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003)

    Article  CAS  Google Scholar 

  147. D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004)

    Article  CAS  Google Scholar 

  148. A. Greiner, J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 5670–5703 (2007)

    Article  CAS  Google Scholar 

  149. D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7, 216–223 (1996)

    Article  CAS  Google Scholar 

  150. A.S. Levitt, M. Alhabeb, C.B. Hatter, A. Sarycheva, G. Dion, Y. Gogotsi, Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 7, 269–277 (2019)

    Article  CAS  Google Scholar 

  151. H. Kim, B. Kim, I. Kim, Fabrication and EMI shielding effectiveness of Ag-decorated highly porous poly(vinyl alcohol)/Fe2O3 nanofibrous composites. Mater. Chem. Phys. 135, 1024–1029 (2012)

    Article  CAS  Google Scholar 

  152. Q. Bao, H. Zhang, J. Yang, S. Wang, D.Y. Tang, R. Jose, S. Ramakrishna, C.T. Lim, K.P. Loh, Graphene-polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 20, 782–791 (2010)

    Article  CAS  Google Scholar 

  153. Y. Luo, H. Shen, Y. Fang, Y. Cao, J. Huang, M. Zhang, J. Dai, X. Shi, Z. Zhang, Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. Acs Appl. Mater. Interfaces 7, 6331–6339 (2015)

    Article  CAS  Google Scholar 

  154. Q. Guo, Z. Wei, Z. Xue, C. Jiang, H. Zhao, Y. Zhang, G. Wang, D. Chen, Z. Di, Y. Mei, Semidry release of nanomembranes for tubular origami. Appl. Phys. Lett. 117, 113106 (2020)

    Article  CAS  Google Scholar 

  155. F. Wang, C. Jiang, J. Huang, Multiferroic thin film via SrRuO3-BaTiO3 vertically aligned nanocomposite design. Appl. Phys. Lett. 117, 162902 (2020)

    Article  CAS  Google Scholar 

  156. G. Yu, C. Jiang, B. Dai, J. Song, The Experiment and simulation method to calibrate the Shear modulus of individual ZnO nanorod. J. Nanosci. Nanotechnol. 16, 4040–4043 (2016)

    Article  CAS  Google Scholar 

  157. W. Lu, C. Jiang, D. Caudle, C. Tang, Q. Sun, J. Xu, J. Song, Controllable growth of laterally aligned zinc oxide nanorod arrays on a selected surface of the silicon substrate by a catalyst-free vapor solid process—a technique for growing nanocircuits. Phys. Chem. Chem. Phys. 15, 13532–13537 (2013)

    Article  CAS  Google Scholar 

  158. Q. Li, S. Bi, Q. Guo, S. Fan, Y. Liu, C. Jiang, J. Song, Paper-like foldable nanowave circuit with ultralarge curvature and ultrahigh stability. Acs Appl. Mater. Interfaces 11, 43368–43375 (2019)

    Article  CAS  Google Scholar 

  159. C. Jiang, W. Lu, J. Song, Shear modulus property characterization of nanorods. Nano Lett. 13, 111–115 (2013)

    Article  CAS  Google Scholar 

  160. C. Jiang, Q. Li, J. Huang, S. Bi, R. Ji, Q. Guo, Single-layer MoS2 mechanical resonant piezo-sensors with high mass sensitivity. Acs Appl. Mater. Interfaces 12, 41991–41998 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China [Grant No. 51975101].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Jiang, C., Li, Q. et al. Development and current situation of flexible and transparent EM shielding materials. J Mater Sci: Mater Electron 32, 25603–25630 (2021). https://doi.org/10.1007/s10854-021-05409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05409-4

Navigation